de(1) de(1)

NAME
dc - an arbitrary precision calculator

SYNOPSIS
dc [-V] [--version] [-h] [--help]
[-e scriptexpression] [--expression=scriptexpression]
[-f scriptfile] [--file=scriptfile]
[file ...]

DESCRIPTION
dcis a reverse-polish desk calculator which supports unlimited precision arithmetic. It also allows you to
define and call macroNormally dc reads from the standard input; iffasommand arguments arevgn to
it, they are filenames, andcreads andxecutes the contents of the files before reading from standard input.
All normal output is to standard output; all error output is to standard error.

A revease-polish calculator stores numbers on a st&fiering a number pushes it on the sta8kith-
metic operations pop arguments$tbfe stack and push the results.

To enter a number imc, type the digits (using upper case lettérshroughF as "digits" when wrking
with input bases greater than ten), with an optional decimal pBxponential notation is not supported.
To enter a ngative rumber begn the number with'*’*. **-"* cannot be used for this, as it is a binary opera-
tor for subtraction insteadTo enter two numbers in succession, separate them with spacesMines
These hee o meaning as commands.

OPTIONS
dcmay be iroked with the following command-line options:
-V
--version
Print out the version afcthat is being run and a copyright notice, then exit.
-h

--help Print a usage message briefly summarizing these command-line options andj-te@dsting
address, then exit.

-e script

--expression=script
Add the commands iscript to the set of commands to be run while processing the input.
-f script-file

--file=script-file
Add the commands contained in the &kipt-fileto the set of commands to be run while process-
ing the input.

If any command-line parameters remain after processing theeathese parameters are interpreted as the
names of input files to be processetlfile name of- refers to the standard input stream. The standard
input will processed if no script files or expressions are specified.

Printing Commands

p Prints the value on the top of the stack, without altering the staciewline is printed after the
value.

n Prints the value on the top of the stack, popping it off, and does not print a newline after.

P Pops of the \alue on top of the stack. If it it a string, it is simply printed without a trailivg ne

line. Otherwiseit is a numberand the integer portion of its absolute value is printed out as a
"base (UCHAR_MAX+1)" byte streamAssuming that (UCHAR_MAX+1) is 256 (as it is on
most machines with 8-bit bytes), the sequenckKSKOkl/ 1Ss [Is*]Sxd0>x
[2567Ssd0<x]dsxxsx[q]Sq[Lsd0>gaPIxx] dsxxsx0sqLgsxLxLK+kcould also accomplish this
function. (Muchof the complexity of the alve mative-dc code is due to the ™ computing the ehar
acters backwards, and the desire to ensure that all registers wind up back in their original states.)

GNU Project 2006-06-11 1

de(1) de(1)

f Prints the entire contents of the stack without alteringhémg. Thisis a good command to use if
you are lost or want to figure out what the effect of some command has been.

Arithmetic
+ Pops tw values of the stack, adds them, and pushes the re3iile precision of the result is
determined only by the values of the arguments, and is enough to be exact.

- Pops tvo values, subtracts the first one popped from the second one popped, and pushes the result.

* Pops tvo values, multiplies them, and pushes the restlie number of fraction digits in the result
depends on the current precision value and the number of fraction digits irotirguments.

/ Pops tvo values, diides the second one popped from the first one popped, and pushes the result.
The number of fraction digits is specified by the precision value.

% Pops tvo values, computes the remainder of the division that teenmand wuld do, and pushes
that. Thevalue computed is the same as that computed by the sedbemnite/ Ld*- .

Pops tvo values, drides the second one popped from the first one popped. The quotient is pushed
first, and the remainder is pushedtelThenumber of fraction digits used in the division is speci-
fied by the precisionalue. (Thesequenceé&dSn Inld/ LnLd% could also accomplish this func-

tion, with slightly different error checking.)

Pops tvo values and@onentiates, using the first value popped as the exponent and the second
popped as the base. The fraction part of #pweent is ignored. The precision value specifies the
number of fraction digits in the result.

Pops three values and computes a modulporeentiation. Thdirst value popped is used as the
reduction modulus; this value must be a non-zero nynabdrshould be an inger The second
popped is used as the exponent; this value must be a gaiveeaumber and ary fractional part
of this exponent will be ignored. The thirdlue popped is the base which getpamentiated,
which should be an inger For small integers this is likthe sequenc&m™Lm%, but, unlike ~,
this command will work with arbitrarily large exponents.

% Pops one value, computes its square root, and pushes that. The precision value specifies the num-
ber of fraction digits in the result.

Most arithmetic operations arefedted by the “precisionalue’, which you can set with thie command.
The default precision value is zero, which means that all arithmetgpefor addition and subtraction pro-
duces integer results.

Stack Control
c Clears the stack, rendering it empty.

d Duplicates the value on the top of the stack, pushing anothgiotp Thus,” 4d*p” computes 4
squared and prints it.

r Reverses the order of (swaps) the toptwalues on the stack. (This can also be accomplished
with the sequencBaSbLalb.)

Registers
dc provides at least 256 memory registers, each hamed by a single chavactean store a number or a
string in a register and retvie it later.

s Pop the value 6the top of the stack and store it into register
Ir Copy the value in registar and push it onto the stack. This does not alter the contents of
Each register also contains its own stack. The current register value is the top of thesrdgisiter’

Sr Pop the value 6the top of the (main) stack and push it onto the stackgidtegr. The preious
value of the register becomes inaccessible.

Lr Pop the value dthe top of rgisterr’s sack and push it onto the main stadihe previous &lue
in register’s stack, if ary, is now accessible via thk command.

GNU Project 2006-06-11 2

de(1) de(1)

Parameters
dc has three parameters that control its operation: the precision, the input radix, and the outptiheadix.
precision specifies the number of fraction digits to keep in the result of most arithmetic operitiens.
input radix controls the interpretation of numbers typed in; all numbers typed in use thisTiagigutput
radix is used for printing numbers.

The input and output radices are separate parameters; you carherakunequal, which can be useful or
confusing. Thenput radix must be between 2 and 16 inslasiThe output radix must be at least Phe
precision must be zero or greatd@ihe precision is alays measured in decimal digitsgeedless of the cur
rent input or output radix.

[Pops the value bthe top of the stack and uses it to set the input radix.
o] Pops the value bthe top of the stack and uses it to set the output radix.
k Pops the value bthe top of the stack and uses it to set the precision.

I Pushes the current input radix on the stack.

@] Pushes the current output radix on the stack.

K Pushes the current precision on the stack.

Strings
dc has a limited ability to operate on strings as well as on numbers; the only things you can do with strings
are print them andxecute them as macros (which means that the contents of the string are procdssed as
commands). Alregisters and the stack can hold strings, dodiways knows whether gngiven object is
a dring or a humber Some commands such as arithmetic operations demand numbeguaer=ts and
print errors if gven drings. Othercommands can accept either a number or a string; for example, the
command can accept either and prints the object according to its type.

[characterg
Makes a string containingharacters(contained between balanceend] characters), and pushes
it on the stack.For example,[foo]P prints the charactefso (with no newline).

a The top-of-stack is popped. If itag8 a numberthen the low-order byte of this number is con-
verted into a string and pushed onto the stack. Otherwise the top-of-stack was a string, and the
first character of that string is pushed back.

X Pops a value bthe stack andxecutes it as a macrdNormally it should be a string; if it is a num-
ber, it is smply pushed back onto the stackor example,[1p]x executes the macrdp which
pushesdl on the stack and prinfison a separate line.

Macros are most often stored imgisters;[1p]sa stores a macro to prirdtinto registera, and lax invokes
this macro.

>r Pops tvo values dof the stack and compares them assuming ¢éhe numbers, xecuting the con-
tents of rgisterr as a macro if the original top-of-stack is greafBinus,1 2>a will invoke regs-
tera's contents an@ 1>a will not.

I>r Similar but irvokes the macro if the original top-of-stack is not greater than (less than or equal to)
what was the second-to-top.

<r Similar but irvokes the macro if the original top-of-stack is less.

I<r Similar but irvokes the macro if the original top-of-stack is not less than (greater than or equal to)
what was the second-to-top.

=r Similar but irvokes the macro if the te numbers popped are equal.

I=r Similar but irvokes the macro if the te numbers popped are not equal.

? Reads a line from the terminal ankkeeutes it. This command allows a macro to request input

from the user.

GNU Project 2006-06-11 3

de(1) de(1)

q exts from a macro and also from the macro whicloked it. If called from the top ke, or from
a macro which was called directly from the topde the g command will causédcto exit.

Q Pops a value bthe stack and uses it as a count wélle of macro gecution to be gited. Thus,
3Q exits three lgels. TheQ command will neer causedcto exit.

Status Inquiry
Z Pops a value bthe stack, calculates the number of digits it has (or number of characters, if it is a
string) and pushes that numbéihe digit count for a number doast include ay leading zeros,
evan if those appear to the right of the radix point.

X Pops a value bthe stack, calculates the number of fraction digits it has, and pushes that.number
For a dring, the value pushed is 0.

z Pushes the current stack depth: the number of objects on the stack befowtiereof thez
command.

Miscellaneous
! Will run the rest of the line as a system command. Note that parsing of the !<, !=, and !> com-
mands ta& precedence, so if you want to run a command starting with <, =, or > you will need to
add a space after the !.

Will interpret the rest of the line as a comment.

ir Will pop the top tw values of of the stack. The old second-to-toplwe will be stored in the
arrayr, indexed by the old top-of-stack value.

ir Pops the top-of-stack and uses it as anxndt the array. The selectedalue is then pushed
onto the stack.

Note that each stacked instance of a register has its own array associated Witls &.0.a 0Sa 2 0:a La
0;ap will print 1, because the 2 was stored in an instance of 0:a that was later popped.

FILES
“/.dcrc The commands in this file will bexecuted when dc is first run.

BUGS
Email bug reports tbug-dc@gnu.org

GNU Project 2006-06-11 4

be(l) be(l)

NAME

bc - An arbitrary precision calculator language
SYNTAX

bc [-hlwsqgv] [long-options] [file ...]
DESCRIPTION

bc is a language that supports arbitrary precision numbers with interasteution of statementsThere
are some similarities in the syntax to the C programming languagtandard math library isvailable by
command line option. If requested, the math library is defined before procesgifiteanbc starts by
processing code from all the files listed on the command line in the order listed. After all\Vddleba
processedbc reads from the standard input. All code ieaited as it is read. (If a file contains a com-
mand to halt the processor, will never read from the standard input.)

This version ofoc contains seeral extensions beyond traditionat implementations and the POSIX draft
standard. Commarlthe options can cause these extensions to prirgraimg or to be rejected. This doc-
ument describes the language accepted by this procé&sdensions will be identified as such.

OPTIONS
-h, --help
Print the usage and exit.
-i, --interactve
Force interactie node.
-l, --mathlib
Define the standard math library.
-w, --warn
Give warnings for extensions to POSb¥X.
-s, --standard
Process exactly the POSbB¢ language.
-q, --quiet
Do not print the normal GNU bc welcome.
-V, --version
Print the version number and copyright and quit.
NUMBERS

The most basic element bt is the number Numbers are arbitrary precision numbefgis precision is
both in the integer part and the fractional patl numbers are represented internally in decimal and all
computation is done in decimalThis version truncates results from divide and multiply operations.)
There are tw atributes of numbers, the length and the scalee length is the total number of significant
decimal digits in a number and the scale is the total number of decimal digits after the decima&gooint.
example:

.000001 has a length of 6 and scale of 6.

1935.000 has a length of 7 and a scale of 3.

VARIABLES
Numbers are stored in twtypes of variables, simple variables and arrays. Both simple variables and array
variables are named. Names begin with a letter followed gynamber of letters, digits and underscores.
All letters must be lver case. (Full alpha-numeric names are an extension. In PRSAX names are a
single lower case lettgr Thetype of \ariable is clear by the context because all array variable names will
be followed by brackets ([]).

There are four speciahviablesscale, ibase, obasandlast. scaledefines har some operations use digits
after the decimal point. The default valuessfleis 0.ibase and obasedefine the corersion base for
input and output numbers. The default for both input and output is badasi@an extension) is aavi-
able that has thealue of the last printed numbefhese will be discussed in further detail where appropri-
ate. Allof these variables may v&values assigned to them as well as used in expressions.

GNU Project 2006-06-11 1

be(l) be(l)

COMMENTS
Comments irbc start with the characters and end with the characte's Comments may start gwhere
and appear as a single space in the inplitis causes comments to delimit other input itefa. exam-
ple, a comment can not be found in the middle of a variable name.) Comments inglugedares (end
of line) between the start and the end of the comment.

To wpport the use of scripts ftac, a sngle line comment has been added asxension. Asingle line
comment starts at#character and continues to the next end of the line. The end of line character is not
part of the comment and is processed normally.

EXPRESSIONS
The numbers are manipulated by expressions and statements. Since the language was designed to be inter
active, satements and expressions axeceted as soon as possiblEhere is no "main" programnstead,
code is gecuted as it is encountered. (Functions, discussed in detaild@&@efined when encountered.)

A simple epression is just a constatic corverts constants into internal decimal numbers using the cur
rent input base, specified by thariableibase (There is an exception in functions.) Thegdevalues of
ibaseare 2 through 16. Assigning a value outside this rangmatewill result in a value of 2 or 16lnput
numbers may contain the characters 0-9 and (Al¢te: Theg must be capitalsLower case letters aran-

able names.) Single digit numbersvays hare the value of the digit gardless of the value dbase (i.e.

A = 10.) For multi-digit numberspc changes all input digits greater or equal to ibase to the value of
ibasel. Thismakes the numbéi-F always be the largest 3 digit number of the input base.

Full expressions are similar to myaather high leel languages. Sincthere is only one kind of humber
there are no rules for mixing types. Instead, there are rules on the scapeessmons. Eery expression
has a scale. This is deed from the scale of original numbers, the operation performed and i cases,
the value of the ariablescale Legd values of the ariablescaleare 0 to the maximum number repre-
sentable by a C integer.

In the following descriptions of ¢gl expressions, “epr" refers to a complete expression and "var" refers to
a smple or an arrayariable. Asimple variable is just a
name
and an array variable is specified as
namégexpr]
Unless specifically mentioned the scale of the result is the maximum scale of the expressi@ts in

-expr The result is the gation of the expression.
++var The variable is incremented by one and tivevaue is the result of the expression.
--var The variable is decremented by one and thevadue is the result of the expression.

var ++
The result of the expression is the value of thgable and then the variable is incremented by
one.

var-- The result of the expression is the value of the variable and then the variable is decremented by
one.

expr + expr
The result of the expression is the sum of the éxpressions.

expr - expr
The result of the expression is the difference of theeypressions.

expr * expr
The result of the expression is the product of treexpressions.

expr / expr

The result of the expression is the quotient of the éxpressions. Thecale of the result is the
value of the variablecale

GNU Project 2006-06-11 2

be(l) be(l)

expr % expr
The result of the expression is the "remainder" and it is computed in the followingrar com-
pute a%b, first a/b is computed soaledigits. Thatresult is used to compute a-(a/b)*b to the
scale of the maximum afcalerscale(b) and scale(a)f scaleis set to zero and botlxgressions
are integers this expression is the integer remainder function.

expr ~ expr
The result of the expression is the value of the first raised to the second. The spcessian
must be an inger (If the second expression is not an g&e a warning is generated and the
expression is truncated to get an gee\alue.) Thescale of the result iscaleif the exponent is
negdive. If the exponent is posit the scale of the result is the minimum of the scale of the first
expression times the value of the exponent and the maximwoatéand the scale of the first
expression. (e.gscale(a’b) = min(scale(a)*b, mas€ale, scale(a))).) Itshould be noted that
expr 0 will always return the value of 1.

(expr) This alters the standard precedence to forcevdteagion of the expression.

var = expr
The variable is assigned the value of the expression.

var <op>= expr
This is equalent to "var = var <op> expr" with the exception that the "var" panakiated only
once. Thian malk a dfference if "var" is an array.

Relational expressions are a special kind of expression thagsabsaluate to 0 or 1, O if the relation is

false and 1 if the relation is true. These may appearyinega expression. (POSIXc requires that rela-

tional expressions are used only in if, while, and for statements and that only one relational test may be
done in them.) The relational operators are

exprl < expr2
The result is 1 if exprl is strictly less than expr2.

exprl <= expr2
The result is 1 if exprl is less than or equal to expr2.

exprl > expr2
The result is 1 if exprl is strictly greater than expr2.

exprl >= expr2
The result is 1 if exprl is greater than or equal to expr2.

exprl == expr2
The result is 1 if exprl is equal to expr2.

exprl 1= expr2
The result is 1 if exprl is not equal to expr2.

Boolean operations are alsgd (POSIXbc does NO haveboolean operations). The result of all bool-
ean operations are 0 and 1 (for false and true) as in relatiqgraksions. Thboolean operators are:

lexpr The resultis 1 if expris 0.

expr && expr
The result is 1 if both expressions are non-zero.

expr || expr
The result is 1 if either expression is non-zero.
The expression precedence is as follows: (lowest to highest)
|| operatarleft associatie
&& operator, left associatie
I operator nonassociatie
Relational operators, left associati
Assignment operatpright associatie

GNU Project 2006-06-11 3

be(l)

be(l)

+ and - operators, left associai

*, [and % operators, left associeti
" operator right associatie

unary - operatgmonassociatie

++ and -- operators, nonassoaiati

This precedence was chosen so that POSIX comgi@ptograms will run correctlyThis will cause the
use of the relational and logical operators twehadme unusual behavior when used with assignment
expressions. Considéne expression;

a=3<5

Most C programmers would assume this would assign the result of "3 < 5" (the value 1) to the variable "a".
What this does ibc is assign the value 3 to thanable "a" and then compare 3 to 5. It is best to use
parenthesis when using relational and logical operators with the assignment operators.

There are a f@ more special expressions that areviited inbc. These hee © do with user defined func-
tions and standard function$hey all appear asriaméparametery’. Seethe section on functions for user
defined functions. The standard functions are:

length (expression)
The value of the length function is the number of significant digits in the expression.

read () The read function (an extension) will read a number from the standard irgantileéss of where
the function occurs.Beware, this can cause problems with the mixing of data and program in the
standard input.The best use for this function is in a previously written program that needs input
from the userbut never alows program code to be input from the uséhe \alue of the read
function is the number read from the standard input using the cueleiet of the ariableibase
for the cowersion base.

scale (expression)
The value of the scale function is the number of digits after the decimal point in the expression.

sqrt (expression)
The value of the sqrt function is the square root of ¥peession. Ifthe expression is getive, a
run time error is generated.

STATEMENTS

Statements (as in most algebraic languages) provide the sequencipgestion ealuation. Inbc state-
ments are xecuted "as soon as possibleExecution happens when a newline in encountered and there is
one or more complete statemenBue to this immediatexecution, newlines are very important . In

fact, both a semicolon and awlse are used as statement separators. An improperly placed newline will
cause a syntax erroBecause newlines are statement separators, it is possible to hidéng g using

the backslash charactefhe sequence "\<nl>", where <nl> is the newline appealxtas whitespace
instead of a ngline. A statement list is a series of statements separated by semicolonsvéindsneThe
following is a list ofbc statements and what thdo: (Things enclosed in brackets ([]) are optional parts of
the statement.)

expression
This statement does one ofathings. Ifthe expression starts with "<variable> <assignment> ...",
it is considered to be an assignment statement. Ifxpeession is not an assignment statement,
the expression isvaluated and printed to the outpukfter the number is printed, a newline is
printed. For example, "a=1" is an assignment statement and "(a=1)" ispa@ssion that has an
embedded assignment. All numbers that are printed are printed in the base specifiecally the v
able obase The leyd values forobaseare 2 through BC_BSE_MAX. (Seethe section LIM-
ITS.) For bases 2 through 16, the usual method of writing numbers is Beebases greater than
16, bc uses a multi-character digit method of printing the numbers where each higher base digit is
printed as a base 10 numbédihe multi-character digits are separated by spaces. Each digit con-
tains the number of characters required to represent the basduerof/"obase-1". Since num-
bers are of arbitrary precision, some numbers may not be printable on a single outptitdise.
long numbers will be split across lines using the "\" as the last character on a line. The maximum

GNU Project 2006-06-11 4

be(l)

be(l)

number of characters printed per line is 70. Due to the intega®tture ofbc, printing a number
causes the side effect of assigning the printed value to the spatédilelast. This allows the
user to receer the last value printed without having to retype tkpression that printed the num-
ber Assigning tolast is legd and will overwrite the last printed value with the assignedue.
The newly assigned value will remain until the next number is printed or anatheris assigned

to last. (Some installations may allothe use of a single period (.) which is not part of a number
as a short hand notation for fast.)

string The string is printed to the output. Strings start with a double quote character and contain all char
acters until the next double quote charactslt characters are takliterally, including ag new-
line. Nonewline character is printed after the string.

print list

The print statement (arxtension) provides another method of output. The "list" is a list of strings
and expressions separated by comnizech string or expression is printed in the order of the list.
No terminating newline is printedExpressions areveluated and their value is printed and
assigned to theaviablelast. Strings in the print statement are printed to the output and may con-
tain special charactersSpecial characters start with the backslash character (\). The special char
acters recognized Hyc are "a" (alert or bell), "b" (backspace), "f* (form feed), "n" (newline), "r"
(carriage return), "q" (double quote), "t" (tab), and "\" (backslasgimy other character follwing

the backslash will be ignored.

{ statement_list }

This is the compound statement. It allomultiple statements to be grouped together Xecie
tion.

if (expression) statementélgestatement2]

The if statementwaluates the xgpression andxecutes statementl or statement2 depending on the
vaue of the &pression. Ifthe expression is non-zero, statementlxiced. If statement?2 is
present and the value of the expression is 0, then statementised. (Theelse clause is an
extension.)

while (expression) statement

The while statement wilb@cute the statement while the expression is non-zerovalitaes the
expression before eachxeeution of the statementTermination of the loop is caused by a zero
expression value or thexecution of a break statement.

for ([expressionl] ; [expression2] ; [expression3]) statement

The for statement controls repeatedoition of the statementExpressionl iswaluated before
the loop. Expression2 isvaluated before eachxecution of the statement. If it is non-zero, the
statement isv@luated. Ifit is zero, the loop is terminated. After eacteaition of the statement,
expression3 isvaluated before the reduation of pression2. lexpressionl or expression3 are
missing, nothing isw@luated at the point tlyewould be ®aluated. Ifexpression2 is missing, it is
the same as substituting thalue 1 for &pression2. (Theptional expressions are axtension.
POSIXbc requires all threexpressions.) Théollowing is equvalent code for the for statement:
expressionl;
while (expression2) {

statement;

expression3;

}

break This statement causes a forced exit of the most recent enclosing while statement or for statement.

continue

halt

GNU Project

The continue statement (artension) causethe most recent enclosing for statement to start the
next iteration.

The halt statement (an extension) is agcated statement that causeshgrocessor to quit only
when it is &ecuted. Br example, "if (0 == 1) halt" will not caus® to terminate because the halt
is not executed.

2006-06-11 5

be(l) be(l)

return Return the value 0 from a function. (See the section on functions.)

return (expression)
Return the alue of the expression from a function. (See the section on functions.) Asecan e
sion, the parenthesis are not required.

PSEUDO STRTEMENTS
These statements are not statements in the traditional SEmseare not eecuted statements. Their func-
tion is performed at "compile" time.

limits Print the local limits enforced by the local versiorbof This is an extension.

quit When the quit statement is read, bweprocessor is terminated,gadless of where the quit state-
ment is found.For example, "if (0 == 1) quit" will causbc to terminate.

warranty
Print a longer warranty notice. This is an extension.

FUNCTIONS
Functions provide a method of defining a computation that camdoated later Functions inbc always
compute a alue and return it to the calleFunction definitions are "dynamic" in the sense that a function
is undefined until a definition is encountered in the input. That definition is then used until another defini-
tion function for the same name is encountered. Thedsdinition then replaces the older definitioA.
function is defined as follows:
definename(parameters { newline
auto_list statement_ligt
A function call is just an expression of the fommarthéparametery'.

Paameters are numbers or arrays (atemsion). Inthe function definition, zero or more parameters are
defined by listing their names separated by commdisparameters are call by value parametekstays

are specified in the parameter definition by the notatiam¥]". In the function call, actual parameters

are full expressions for number parameters. The same notation is used for passing arrays as for defining
array parameters. The named array is passed by value to the function. Since function definitions are
dynamic, parameter numbers and types are eueeken a function is calleddny mismatch in number or

types of parameters will cause a runtime erfrruntime error will also occur for the call to an undefined
function.

Theauto_listis an optional list of variables that are for "local" u3ée syntax of the auto list (if present)

is "auto name ... ;". (The semicolon is optional fachnameis the name of an aut@siable. Arraysnay

be specified by using the same notation as used in parameters. atiabley hee their values pushed

onto a stack at the start of the function. Theables are then initialized to zero and used throughout the
execution of the function. At function exit, thesaniables are popped so that the original value (at the time
of the function call) of theseaviables are restored. The parameters are really auto variables that are initial-
ized to a value provided in the function call. Auto variables are different than traditional doiceddles
because if function A calls function B, B may access functisnadto variables by just using the same
name, unless function B has called them aariables. Dueo the fact that auto variables and parameters
are pushed onto a stadig supports recurge functions.

The function body is a list dic statements. Agn, statements are separated by semicolonswvdines.
Return statements cause the termination of a function and the returaloka Vherere two versions of

the return statement. The first formmeturn”, returns the value 0 to the callingpeession. Thesecond

form, "return (expression)”, computes the value of the expression and returns that value to the calling
expression. Theres an implied teturn (0)" at the end of eery function. This allows a function to termi-

nate and return 0 without an explicit return statement.

Functions also change the usage of tmgableibase All constants in the function body will be aanted
using the value abaseat the time of the function callChanges oibasewill be ignored during thexecu-
tion of the function except for the standard functiead, which will always use the current value ilase
for corversion of numbers.

Several extensions ha keen added to functions. First, the format of the definition has been slightly

GNU Project 2006-06-11 6

be(l) be(l)

relaxed. Thestandard requires the opening brace be on the same line aefitteekeyword and all other
parts must be on following lines. This versiorbafwill allow any number of newlines before and after the
opening brace of the functiorzor example, the following definitions aregd.
define d (n) { return (2*n); }
define d (n)
{ r eturn (2*n); }

Functions may be defined agid. A void funtion returns no value and thus may not be usedyirplace
that needs aalue. Avoid function does not produceyaoutput when called by itself on an input lin€he
key word void is placed between theek word define and the function namef-or example, consider the
following session.

define py (y) { print "--->", y, "<---","0; }

define void px (x) { print "--->", X, "<---", "0; }

py(1)

___>1<___

0

px(1)

___>1<___
Sincepy is not a void function, the call @ly(1) prints the desired output and then prints a second line that
is the value of the function. Since thalwe of a function that is notvgn an eplicit return statement is
zero, the zero is printedzor px(1), no zro is printed because the function is a void function.

Also, call by \ariable for arrays was addedo declare a call by variable arrahe declaration of the array
parameter in the function definition looksdikknamd]". Thecall to the function remains the same as call
by value arrays.

MATH LIBRARY
If bcis invoked with the-l option, a math library is preloaded and the default scale is set td 2@ math
functions will calculate their results to the scale set at the time of theirTdadl.math library defines the
following functions:

s (X) The sine of x, x is in radians.

c(X) The cosine of x, x is in radians.

a(x) The arctangent of X, arctangent returns radians.

I (X) The natural logarithm of x.

e () The exponential function of raising e to the value x.
j(n,X) The Bessel function of integer order n of x.

EXAMPLES
In /bin/sh, the following will assign the value of "pi" to the shell varigdile
pi=$(echo "scale=10; 4*a(1)" | bc -I)
The following is the definition of the exponential function used in the math libfidng function is written
in POSIXbc.
scale = 20

/* Uses the fact that €"x = (€"(x/2))"2
When x is small enough, we use the series:
exX=1+x+x2/2! +x3/3! + ...
*/

define e(x) {
auto a, d, e fimv,z

/* Check the sign of x. */
if (x<0) {

GNU Project 2006-06-11 7

be(l) be(l)

1
- X

m
X
}

/* Precondition x. */
z = scale;
scale = 4 + z + .44*x;
while (x > 1) {
f+=1;
X I=2;
}

/* Initialize the variables. */
v 1+x

a = x

d 1

for (i=2; 1; i++) {
e=(@*>x)/ (d *=i)
if (e==0){
if (f>0) while (f--) VvV = Vvt
scale =z
if (m) return (1/v);
return (v/1);

The following is code that uses the extended featurés tf implement a simple program for calculating
checkbook balances. This program is begithn a file so that it can be used méimes without having to
retype it at eery use.

scale=2

print "\nCheck book program\n"

print" Remember, deposits are negative transactions.\n"

print" Exit by a 0 transaction.\n\n"

print "Initial balance? "; bal = read()
bal /=1
print "\n"
while (1) {
“"current balance ="; bal
"transaction? "; trans = read()
if (trans == 0) break;

bal -= trans
bal /=1

}

quit

The following is the definition of the recwsifactorial function.
define f (x) {
if (x <=1) return (1);
return (f(x-1) * x);

}

GNU Project 2006-06-11 8

be(l) be(l)

READLINE AND LIBEDIT OPTIONS
GNU bc can be compiled (via a configure option) to use the @Gd#dline input editor library or the BSD
libedit library. This allows the user to do editing of lines before sending thepe.tdt also allows for a
history of previous lines typedihen this option is selecteld¢ has one more speciaanable. Thisspe-
cial variable,history is the number of lines of history retaineor readline, a value of -1 means that an
unlimited number of history lines are retained. Setting the vallstdry to a positve rumber restricts
the number of history lines to the numberepi Thevaue of 0 disables the history featuréhe defult
value is 100. For more information, read the user manuals for the i@atlline, history and BSDlibedit
libraries. Onecan not enable botleadline andlibedit at the same time.

DIFFERENCES
This version ofbc was implemented from the POSIX P1003.2/D11 draft and contawresatalifferences
and extensions relag o the draft and traditional implementatiori$.is not implemented in the traditional
way using dc(1). This version is a single process which parses and runs a byte code translation of the pro-
gram. Theras an "undocumented" option (-c) that causes the program to output the byte code to the stan-
dard output instead of running itt was mainly used for debugging the parser and preparing the math
library.

A major source of differences is extensions, where a featuxéeisded to add more functionality and addi-
tions, where n@ features are added. The following is the list of differences and extensions.

LANG environment
This version does not conform to the POSIX standard in the processing of the LA @ent
variable and all environment variables starting with LC .

names Traditional and POSDXc have sngle letter names for functionsanables and arraysThey have
been extended to be multi-character names that start with a letter and may contain letters, numbers
and the underscore character.

Strings Strings are not allowed to contain NUL charactd?QSIX says all characters must be included in
strings.

last POSIXbc does not hee alast variable. Somémplementations obc use the period (.) in a simi-
lar way.

comparisons
POSIX bc allows comparisons only in the if statement, the while statement, and the second
expression of the for statemenflso, only one relational operation is allowed in each of those
statements.

if statement, else clause
POSIXbc does not hee an dse clause.

for statement
POSIXbc requires all expressions to be present in the for statement.

&&, ||, !
POSIXbc does not hee the logical operators.

read function
POSIXbc does not hee a ead function.

print statement
POSIXbc does not hee a pint statement .

continue statement
POSIXbc does not hee a ©ntinue statement.

return statement
POSIXbc requires parentheses around the return expression.

GNU Project 2006-06-11 9

be(l)

be(l)

array parameters
POSIXbc does not (currently) support array parameters in full. The POSIX grammar allows for
arrays in function definitions, but does not provide a method to specify an array as an actual
parameter (This is most likely anwersight in the grammar Traditional implementations dfc
have aly call by value array parameters.

function format
POSIXbc requires the opening brace on the same line adetfiee key word and theauto state-
ment on the next line.

=+, =-, =* =/, =%, ="
POSIXbc does not require these "old style" assignment operators to be defimediersion may
allow these "old style" assignmenttlse the limits statement to see if the installed version sup-
ports them. If it does support the "old style" assignment operators, the statement "a =- 1" will
decrementi by 1 instead of settingto the value -1.

spaces in numbers
Other implementations dic allow spaces in numbersFor example, "x=1 3" wuld assign the
value 13 to the variable x. The same statement would cause a syntax error in this vdrsion of

errors andecution
This implementation varies from other implementations in terms of what code wikebeted
when syntax and other errors are found in the program. If a syntax error is found in a function
definition, error receery tries to find the beginning of a statement and continue to parse the func-
tion. Oncea g/ntax error is found in the function, the function will not be callable and becomes
undefined. Syntaerrors in the interacte exeution code will inalidate the current>ecution
block. Theexecution block is terminated by an end of line that appears after a complete sequence
of statementsFor example,
a=1
b=2
has two execution blocks and
{a=1
b=2}
has one xecution block. Any runtime error will terminate thexecution of the currentxecution block. A
runtime warning will not terminate the curremeeution block.

Interrupts
During an interactie ®ssion, the SIGINT signal (usually generated by the control-C character
from the terminal) will causexecution of the currentxecution block to be interrupted. It will
display a "runtime" error indicating which functiorasvinterrupted. After all runtime structures
have keen cleaned up, a message will be printed to notify the usdscimateady for more input.
All previously defined functions remain defined and the value of all non-auto variables are the
value at the point of interruption. All auto variables and function parameters argethoing
the clean up process. During a non-intexactession, the SIGINT signal will terminate the entire
run ofbc.

LIMITS

The following are the limits currently in place for this processor Some of them may & bteen changed
by an installation. Use the limits statement to see the actual values.

BC_BASE_MAX
The maximum output base is currently set at 999. The maximum input base is 16.

BC_DIM_MAX
This is currently an arbitrary limit of 65535 as disfitded. Your installation may be different.

BC_SCALE_MAX
The number of digits after the decimal point is limited to INT_MAX digi#dso, the number of
digits before the decimal point is limited to INT_MAX digits.

GNU Project 2006-06-11 10

be(l) be(l)

BC_STRING_MAX
The limit on the number of characters in a string is INT_MAX characters.

exponent
The value of the exponent in the raise operation (") is limited to LONG_MAX.

variable names

The current limit on the number of unique names is 32767 for each of simple variables, arrays and
functions.

ENVIRONMENT VARIABLES
The following environment variables are processetidy

POSIXLY_CORRECT
This is the same as theoption.

BC_ENV_ARGS
This is another mechanism to get argumentsctoThe format is the same as the command line
arguments. Thesarguments are processed first, sg &ifes listed in the environmentguments
are processed beforeyacommand line argument files. This alle the user to set up "standard"
options and files to be processed\arg invocation ofbc. The files in the environmentriables
would typically contain function definitions for functions the user wants definergt 8me bc is
run.

BC_LINE_LENGTH
This should be an integer specifying the number of characters in an output line for numbers. This
includes the backslash andwiime characters for long numbers. As an extension, the value of
zero disables the multi-line featurAny other value of this variable that is less than 3 sets the line
length to 70.

DIAGNOSTICS
If any file on the command line can not be opettedyill report that the file is unailable and terminate.
Also, there are compile and run time diagnostics that should be self-explanatory.

BUGS
Error recwery is not very good yet.

Email bug reports tbug-bc@gnu.org Be wre to include the wrd “bc” someavhere in the ‘Subject:”
field.

AUTHOR
Philip A. Nelson
philnelson@acm.org

ACKNOWLEDGEMENTS
The author would lik to hank Stge S mmars (Stee.Sommars@att.com) for higtensve relp in testing

the implementationMany great suggestions werevgh. Thisis a much better product due to higdlve-
ment.

GNU Project 2006-06-11 11

GCALCCMD(1) GCALCCMD(1)

NAME
gcalccmd - a console calculator

SYNOPSIS
gcalccmd

DESCRIPTION
gcalccmdis the console version gtalctoolthe calculator of the GNOME desktop environment.

SEE ALSO
gcalctool

17 March 2011 1

GCALCTOOL(1) GCALCTOOL(1)

NAME
gcalctool — a desktop calculator

SYNOPSIS
gcalctool[OPTION] ...

DESCRIPTION
gcalctoolis the official calculator of the GNOME desktop environment.

OPTIONS
-s, ——solve
Solve the equation provided following this option.

—u, ——unittest
Run the unit tests.

-V, ——version

Output version information and exit.
-h, =?, ——help

Prints the command line options.

SEE ALSO
gcalccmd

17 June 2009 1

