
dc(1) dc(1)

NAME
dc − an arbitrary precision calculator

SYNOPSIS
dc [-V] [--version] [-h] [--help]

[-e scriptexpression] [--expression=scriptexpression]
[-f scriptfile] [--file=scriptfile]
[file ...]

DESCRIPTION
dc is a reverse-polish desk calculator which supports unlimited precision arithmetic. It also allows you to
define and call macros.Normally dc reads from the standard input; if any command arguments are given to
it, they are filenames, anddc reads and executes the contents of the files before reading from standard input.
All normal output is to standard output; all error output is to standard error.

A rev erse-polish calculator stores numbers on a stack.Entering a number pushes it on the stack.Arith-
metic operations pop arguments off the stack and push the results.

To enter a number indc, type the digits (using upper case lettersA throughF as "digits" when working
with input bases greater than ten), with an optional decimal point.Exponential notation is not supported.
To enter a negative number, begin the number with ‘‘_’ ’. ‘ ‘-’ ’ cannot be used for this, as it is a binary opera-
tor for subtraction instead.To enter two numbers in succession, separate them with spaces or newlines.
These have no meaning as commands.

OPTIONS
dcmay be invoked with the following command-line options:

-V

--version
Print out the version ofdc that is being run and a copyright notice, then exit.

-h

--help Print a usage message briefly summarizing these command-line options and the bug-reporting
address, then exit.

-escript

--expression=script
Add the commands inscript to the set of commands to be run while processing the input.

-f script-file

--file=script-file
Add the commands contained in the filescript-file to the set of commands to be run while process-
ing the input.

If any command-line parameters remain after processing the above, these parameters are interpreted as the
names of input files to be processed.A file name of- refers to the standard input stream. The standard
input will processed if no script files or expressions are specified.

Printing Commands
p Prints the value on the top of the stack, without altering the stack.A newline is printed after the

value.

n Prints the value on the top of the stack, popping it off, and does not print a newline after.

P Pops off the value on top of the stack. If it it a string, it is simply printed without a trailing new-
line. Otherwiseit is a number, and the integer portion of its absolute value is printed out as a
"base (UCHAR_MAX+1)" byte stream.Assuming that (UCHAR_MAX+1) is 256 (as it is on
most machines with 8-bit bytes), the sequenceKSK0k1/_1Ss [ls*]Sxd0>x
[256˜Ssd0<x]dsxxsx[q]Sq[Lsd0>qaPlxx] dsxxsx0sqLqsxLxLK+kcould also accomplish this
function. (Muchof the complexity of the above native-dc code is due to the ˜ computing the char-
acters backwards, and the desire to ensure that all registers wind up back in their original states.)

GNU Project 2006-06-11 1



dc(1) dc(1)

f Prints the entire contents of the stack without altering anything. Thisis a good command to use if
you are lost or want to figure out what the effect of some command has been.

Arithmetic
+ Pops two values off the stack, adds them, and pushes the result.The precision of the result is

determined only by the values of the arguments, and is enough to be exact.

- Pops two values, subtracts the first one popped from the second one popped, and pushes the result.

* Pops two values, multiplies them, and pushes the result.The number of fraction digits in the result
depends on the current precision value and the number of fraction digits in the two arguments.

/ Pops two values, divides the second one popped from the first one popped, and pushes the result.
The number of fraction digits is specified by the precision value.

% Pops two values, computes the remainder of the division that the/ command would do, and pushes
that. Thevalue computed is the same as that computed by the sequenceSd dld/ Ld*- .

˜ Pops two values, divides the second one popped from the first one popped. The quotient is pushed
first, and the remainder is pushed next. Thenumber of fraction digits used in the division is speci-
fied by the precision value. (ThesequenceSdSn lnld/ LnLd% could also accomplish this func-
tion, with slightly different error checking.)

ˆ Pops two values and exponentiates, using the first value popped as the exponent and the second
popped as the base. The fraction part of the exponent is ignored. The precision value specifies the
number of fraction digits in the result.

| Pops three values and computes a modular exponentiation. Thefirst value popped is used as the
reduction modulus; this value must be a non-zero number, and should be an integer. The second
popped is used as the exponent; this value must be a non-negative number, and any fractional part
of this exponent will be ignored. The third value popped is the base which gets exponentiated,
which should be an integer. For small integers this is like the sequenceSmˆLm% , but, unlike ˆ,
this command will work with arbitrarily large exponents.

v Pops one value, computes its square root, and pushes that. The precision value specifies the num-
ber of fraction digits in the result.

Most arithmetic operations are affected by the ‘‘precision value’’, which you can set with thek command.
The default precision value is zero, which means that all arithmetic except for addition and subtraction pro-
duces integer results.

Stack Control
c Clears the stack, rendering it empty.

d Duplicates the value on the top of the stack, pushing another copy of i t. Thus,‘‘ 4d*p’’ computes 4
squared and prints it.

r Reverses the order of (swaps) the top two values on the stack. (This can also be accomplished
with the sequenceSaSbLaLb.)

Registers
dc provides at least 256 memory registers, each named by a single character. You can store a number or a
string in a register and retrieve it later.

sr Pop the value off the top of the stack and store it into registerr .

lr Copy the value in registerr and push it onto the stack. This does not alter the contents ofr .

Each register also contains its own stack. The current register value is the top of the register’s stack.

Sr Pop the value off the top of the (main) stack and push it onto the stack of registerr . The previous
value of the register becomes inaccessible.

L r Pop the value off the top of registerr ’s stack and push it onto the main stack.The previous value
in registerr ’s stack, if any, is now accessible via thelr command.

GNU Project 2006-06-11 2



dc(1) dc(1)

Parameters
dc has three parameters that control its operation: the precision, the input radix, and the output radix.The
precision specifies the number of fraction digits to keep in the result of most arithmetic operations.The
input radix controls the interpretation of numbers typed in; all numbers typed in use this radix.The output
radix is used for printing numbers.

The input and output radices are separate parameters; you can make them unequal, which can be useful or
confusing. Theinput radix must be between 2 and 16 inclusive. The output radix must be at least 2.The
precision must be zero or greater. The precision is always measured in decimal digits, regardless of the cur-
rent input or output radix.

i Pops the value off the top of the stack and uses it to set the input radix.

o Pops the value off the top of the stack and uses it to set the output radix.

k Pops the value off the top of the stack and uses it to set the precision.

I Pushes the current input radix on the stack.

O Pushes the current output radix on the stack.

K Pushes the current precision on the stack.

Strings
dc has a limited ability to operate on strings as well as on numbers; the only things you can do with strings
are print them and execute them as macros (which means that the contents of the string are processed asdc
commands). Allregisters and the stack can hold strings, anddc always knows whether any giv en object is
a string or a number. Some commands such as arithmetic operations demand numbers as arguments and
print errors if given strings. Othercommands can accept either a number or a string; for example, thep
command can accept either and prints the object according to its type.

[characters]
Makes a string containingcharacters(contained between balanced[ and] characters), and pushes
it on the stack.For example,[foo]P prints the charactersfoo (with no newline).

a The top-of-stack is popped. If it was a number, then the low-order byte of this number is con-
verted into a string and pushed onto the stack. Otherwise the top-of-stack was a string, and the
first character of that string is pushed back.

x Pops a value off the stack and executes it as a macro.Normally it should be a string; if it is a num-
ber, it is simply pushed back onto the stack.For example,[1p]x executes the macro1p which
pushes1 on the stack and prints1 on a separate line.

Macros are most often stored in registers;[1p]sa stores a macro to print1 into registera, and lax invokes
this macro.

>r Pops two values off the stack and compares them assuming they are numbers, executing the con-
tents of registerr as a macro if the original top-of-stack is greater. Thus,1 2>a will invoke regis-
tera’s contents and2 1>a will not.

!>r Similar but invokes the macro if the original top-of-stack is not greater than (less than or equal to)
what was the second-to-top.

<r Similar but invokes the macro if the original top-of-stack is less.

!<r Similar but invokes the macro if the original top-of-stack is not less than (greater than or equal to)
what was the second-to-top.

=r Similar but invokes the macro if the two numbers popped are equal.

!=r Similar but invokes the macro if the two numbers popped are not equal.

? Reads a line from the terminal and executes it. This command allows a macro to request input
from the user.

GNU Project 2006-06-11 3



dc(1) dc(1)

q exits from a macro and also from the macro which invoked it. If called from the top level, or from
a macro which was called directly from the top level, theq command will causedc to exit.

Q Pops a value off the stack and uses it as a count of levels of macro execution to be exited. Thus,
3Q exits three levels. TheQ command will never causedc to exit.

Status Inquiry
Z Pops a value off the stack, calculates the number of digits it has (or number of characters, if it is a

string) and pushes that number. The digit count for a number doesnot include any leading zeros,
ev en if those appear to the right of the radix point.

X Pops a value off the stack, calculates the number of fraction digits it has, and pushes that number.
For a string, the value pushed is 0.

z Pushes the current stack depth: the number of objects on the stack before the execution of thez
command.

Miscellaneous
! Will run the rest of the line as a system command. Note that parsing of the !<, !=, and !> com-

mands take precedence, so if you want to run a command starting with <, =, or > you will need to
add a space after the !.

# Will interpret the rest of the line as a comment.

:r Will pop the top two values off of the stack. The old second-to-top value will be stored in the
arrayr , indexed by the old top-of-stack value.

;r Pops the top-of-stack and uses it as an index into the arrayr . The selected value is then pushed
onto the stack.

Note that each stacked instance of a register has its own array associated with it.Thus1 0:a 0Sa 2 0:a La
0;ap will print 1, because the 2 was stored in an instance of 0:a that was later popped.

FILES
˜/.dcrc The commands in this file will be executed when dc is first run.

BUGS
Email bug reports tobug-dc@gnu.org.

GNU Project 2006-06-11 4



bc(1) bc(1)

NAME
bc - An arbitrary precision calculator language

SYNTAX
bc [ -hlwsqv ] [ long-options] [ file ...]

DESCRIPTION
bc is a language that supports arbitrary precision numbers with interactive execution of statements.There
are some similarities in the syntax to the C programming language.A standard math library is available by
command line option. If requested, the math library is defined before processing any files. bc starts by
processing code from all the files listed on the command line in the order listed. After all files have been
processed,bc reads from the standard input. All code is executed as it is read. (If a file contains a com-
mand to halt the processor,bc will never read from the standard input.)

This version ofbc contains several extensions beyond traditionalbc implementations and the POSIX draft
standard. Commandline options can cause these extensions to print a warning or to be rejected. This doc-
ument describes the language accepted by this processor. Extensions will be identified as such.

OPTIONS
-h, --help

Print the usage and exit.

-i, --interactive
Force interactive mode.

-l, --mathlib
Define the standard math library.

-w, --warn
Give warnings for extensions to POSIXbc.

-s, --standard
Process exactly the POSIXbc language.

-q, --quiet
Do not print the normal GNU bc welcome.

-v, --version
Print the version number and copyright and quit.

NUMBERS
The most basic element inbc is the number. Numbers are arbitrary precision numbers.This precision is
both in the integer part and the fractional part.All numbers are represented internally in decimal and all
computation is done in decimal.(This version truncates results from divide and multiply operations.)
There are two attributes of numbers, the length and the scale.The length is the total number of significant
decimal digits in a number and the scale is the total number of decimal digits after the decimal point.For
example:

.000001 has a length of 6 and scale of 6.
1935.000 has a length of 7 and a scale of 3.

VARIABLES
Numbers are stored in two types of variables, simple variables and arrays. Both simple variables and array
variables are named. Names begin with a letter followed by any number of letters, digits and underscores.
All letters must be lower case. (Full alpha-numeric names are an extension. In POSIXbc all names are a
single lower case letter.) Thetype of variable is clear by the context because all array variable names will
be followed by brackets ([]).

There are four special variables,scale, ibase, obase,andlast. scaledefines how some operations use digits
after the decimal point. The default value ofscale is 0. ibase and obasedefine the conversion base for
input and output numbers. The default for both input and output is base 10.last (an extension) is a vari-
able that has the value of the last printed number. These will be discussed in further detail where appropri-
ate. All of these variables may have values assigned to them as well as used in expressions.

GNU Project 2006-06-11 1



bc(1) bc(1)

COMMENTS
Comments inbc start with the characters/* and end with the characters*/ . Comments may start anywhere
and appear as a single space in the input.(This causes comments to delimit other input items.For exam-
ple, a comment can not be found in the middle of a variable name.) Comments include any newlines (end
of line) between the start and the end of the comment.

To support the use of scripts forbc, a single line comment has been added as an extension. Asingle line
comment starts at a# character and continues to the next end of the line. The end of line character is not
part of the comment and is processed normally.

EXPRESSIONS
The numbers are manipulated by expressions and statements. Since the language was designed to be inter-
active, statements and expressions are executed as soon as possible.There is no "main" program.Instead,
code is executed as it is encountered. (Functions, discussed in detail later, are defined when encountered.)

A simple expression is just a constant.bc converts constants into internal decimal numbers using the cur-
rent input base, specified by the variableibase. (There is an exception in functions.) The legal values of
ibaseare 2 through 16. Assigning a value outside this range toibasewill result in a value of 2 or 16.Input
numbers may contain the characters 0-9 and A-F. (Note: They must be capitals.Lower case letters are vari-
able names.) Single digit numbers always have the value of the digit regardless of the value ofibase. (i.e.
A = 10.) For multi-digit numbers,bc changes all input digits greater or equal to ibase to the value of
ibase-1. Thismakes the numberFFF always be the largest 3 digit number of the input base.

Full expressions are similar to many other high level languages. Sincethere is only one kind of number,
there are no rules for mixing types. Instead, there are rules on the scale of expressions. Every expression
has a scale. This is derived from the scale of original numbers, the operation performed and in many cases,
the value of the variablescale. Leg al values of the variablescaleare 0 to the maximum number repre-
sentable by a C integer.

In the following descriptions of legal expressions, "expr" refers to a complete expression and "var" refers to
a simple or an array variable. Asimple variable is just a

name
and an array variable is specified as

name[expr]
Unless specifically mentioned the scale of the result is the maximum scale of the expressions involved.

- expr The result is the negation of the expression.

++ var The variable is incremented by one and the new value is the result of the expression.

-- var The variable is decremented by one and the new value is the result of the expression.

var ++
The result of the expression is the value of the variable and then the variable is incremented by
one.

var -- The result of the expression is the value of the variable and then the variable is decremented by
one.

expr + expr
The result of the expression is the sum of the two expressions.

expr - expr
The result of the expression is the difference of the two expressions.

expr * expr
The result of the expression is the product of the two expressions.

expr / expr
The result of the expression is the quotient of the two expressions. Thescale of the result is the
value of the variablescale.

GNU Project 2006-06-11 2



bc(1) bc(1)

expr % expr
The result of the expression is the "remainder" and it is computed in the following way. To com-
pute a%b, first a/b is computed toscaledigits. Thatresult is used to compute a-(a/b)*b to the
scale of the maximum ofscale+scale(b) and scale(a).If scaleis set to zero and both expressions
are integers this expression is the integer remainder function.

expr ˆ expr
The result of the expression is the value of the first raised to the second. The second expression
must be an integer. (If the second expression is not an integer, a warning is generated and the
expression is truncated to get an integer value.) Thescale of the result isscaleif the exponent is
negative. If the exponent is positive the scale of the result is the minimum of the scale of the first
expression times the value of the exponent and the maximum ofscaleand the scale of the first
expression. (e.g.scale(aˆb) = min(scale(a)*b, max(scale, scale(a))).) Itshould be noted that
exprˆ0 will always return the value of 1.

( expr ) This alters the standard precedence to force the evaluation of the expression.

var = expr
The variable is assigned the value of the expression.

var <op>= expr
This is equivalent to "var = var <op> expr" with the exception that the "var" part is evaluated only
once. Thiscan make a difference if "var" is an array.

Relational expressions are a special kind of expression that always evaluate to 0 or 1, 0 if the relation is
false and 1 if the relation is true. These may appear in any leg al expression. (POSIXbc requires that rela-
tional expressions are used only in if, while, and for statements and that only one relational test may be
done in them.) The relational operators are

expr1 < expr2
The result is 1 if expr1 is strictly less than expr2.

expr1 <= expr2
The result is 1 if expr1 is less than or equal to expr2.

expr1 > expr2
The result is 1 if expr1 is strictly greater than expr2.

expr1 >= expr2
The result is 1 if expr1 is greater than or equal to expr2.

expr1 == expr2
The result is 1 if expr1 is equal to expr2.

expr1 != expr2
The result is 1 if expr1 is not equal to expr2.

Boolean operations are also legal. (POSIXbc does NOT hav eboolean operations). The result of all bool-
ean operations are 0 and 1 (for false and true) as in relational expressions. Theboolean operators are:

!expr The result is 1 if expr is 0.

expr && expr
The result is 1 if both expressions are non-zero.

expr || expr
The result is 1 if either expression is non-zero.

The expression precedence is as follows: (lowest to highest)
|| operator, left associative
&& operator, left associative
! operator, nonassociative
Relational operators, left associative
Assignment operator, right associative

GNU Project 2006-06-11 3



bc(1) bc(1)

+ and - operators, left associative
*, / and % operators, left associative
ˆ operator, right associative
unary - operator, nonassociative
++ and -- operators, nonassociative

This precedence was chosen so that POSIX compliantbc programs will run correctly. This will cause the
use of the relational and logical operators to have some unusual behavior when used with assignment
expressions. Considerthe expression:

a = 3 < 5

Most C programmers would assume this would assign the result of "3 < 5" (the value 1) to the variable "a".
What this does inbc is assign the value 3 to the variable "a" and then compare 3 to 5. It is best to use
parenthesis when using relational and logical operators with the assignment operators.

There are a few more special expressions that are provided inbc. These have to do with user defined func-
tions and standard functions.They all appear as "name(parameters)". Seethe section on functions for user
defined functions. The standard functions are:

length ( expression )
The value of the length function is the number of significant digits in the expression.

read ( ) The read function (an extension) will read a number from the standard input, regardless of where
the function occurs.Beware, this can cause problems with the mixing of data and program in the
standard input.The best use for this function is in a previously written program that needs input
from the user, but never allows program code to be input from the user. The value of the read
function is the number read from the standard input using the current value of the variableibase
for the conversion base.

scale ( expression )
The value of the scale function is the number of digits after the decimal point in the expression.

sqrt ( expression )
The value of the sqrt function is the square root of the expression. Ifthe expression is negative, a
run time error is generated.

STATEMENTS
Statements (as in most algebraic languages) provide the sequencing of expression evaluation. Inbc state-
ments are executed "as soon as possible."Execution happens when a newline in encountered and there is
one or more complete statements.Due to this immediate execution, newlines are very important inbc. In
fact, both a semicolon and a newline are used as statement separators. An improperly placed newline will
cause a syntax error. Because newlines are statement separators, it is possible to hide a newline by using
the backslash character. The sequence "\<nl>", where <nl> is the newline appears tobc as whitespace
instead of a newline. A statement list is a series of statements separated by semicolons and newlines. The
following is a list ofbc statements and what they do: (Things enclosed in brackets ([]) are optional parts of
the statement.)

expression
This statement does one of two things. If the expression starts with "<variable> <assignment> ...",
it is considered to be an assignment statement. If the expression is not an assignment statement,
the expression is evaluated and printed to the output.After the number is printed, a newline is
printed. For example, "a=1" is an assignment statement and "(a=1)" is an expression that has an
embedded assignment. All numbers that are printed are printed in the base specified by the vari-
able obase. The legal values forobaseare 2 through BC_BASE_MAX. (Seethe section LIM-
ITS.) For bases 2 through 16, the usual method of writing numbers is used.For bases greater than
16, bc uses a multi-character digit method of printing the numbers where each higher base digit is
printed as a base 10 number. The multi-character digits are separated by spaces. Each digit con-
tains the number of characters required to represent the base ten value of "obase-1". Since num-
bers are of arbitrary precision, some numbers may not be printable on a single output line.These
long numbers will be split across lines using the "\" as the last character on a line. The maximum

GNU Project 2006-06-11 4



bc(1) bc(1)

number of characters printed per line is 70. Due to the interactive nature ofbc, printing a number
causes the side effect of assigning the printed value to the special variable last. This allows the
user to recover the last value printed without having to retype the expression that printed the num-
ber. Assigning tolast is legal and will overwrite the last printed value with the assigned value.
The newly assigned value will remain until the next number is printed or another value is assigned
to last. (Some installations may allow the use of a single period (.) which is not part of a number
as a short hand notation for forlast.)

string The string is printed to the output. Strings start with a double quote character and contain all char-
acters until the next double quote character. All characters are take literally, including any new-
line. Nonewline character is printed after the string.

print list
The print statement (an extension) provides another method of output. The "list" is a list of strings
and expressions separated by commas.Each string or expression is printed in the order of the list.
No terminating newline is printed.Expressions are evaluated and their value is printed and
assigned to the variablelast. Strings in the print statement are printed to the output and may con-
tain special characters.Special characters start with the backslash character (\). The special char-
acters recognized bybc are "a" (alert or bell), "b" (backspace), "f" (form feed), "n" (newline), "r"
(carriage return), "q" (double quote), "t" (tab), and "\" (backslash).Any other character following
the backslash will be ignored.

{ statement_list }
This is the compound statement. It allows multiple statements to be grouped together for execu-
tion.

if ( expression ) statement1 [elsestatement2]
The if statement evaluates the expression and executes statement1 or statement2 depending on the
value of the expression. Ifthe expression is non-zero, statement1 is executed. If statement2 is
present and the value of the expression is 0, then statement2 is executed. (Theelse clause is an
extension.)

while ( expression ) statement
The while statement will execute the statement while the expression is non-zero. It evaluates the
expression before each execution of the statement.Termination of the loop is caused by a zero
expression value or the execution of a break statement.

for ( [expression1] ; [expression2] ; [expression3] ) statement
The for statement controls repeated execution of the statement.Expression1 is evaluated before
the loop. Expression2 is evaluated before each execution of the statement. If it is non-zero, the
statement is evaluated. Ifit is zero, the loop is terminated. After each execution of the statement,
expression3 is evaluated before the reevaluation of expression2. Ifexpression1 or expression3 are
missing, nothing is evaluated at the point they would be evaluated. Ifexpression2 is missing, it is
the same as substituting the value 1 for expression2. (Theoptional expressions are an extension.
POSIXbc requires all three expressions.) Thefollowing is equivalent code for the for statement:
expression1;
while (expression2) {

statement;
expression3;

}

break This statement causes a forced exit of the most recent enclosing while statement or for statement.

continue
The continue statement (an extension) causesthe most recent enclosing for statement to start the
next iteration.

halt The halt statement (an extension) is an executed statement that causes thebc processor to quit only
when it is executed. For example, "if (0 == 1) halt" will not causebc to terminate because the halt
is not executed.

GNU Project 2006-06-11 5



bc(1) bc(1)

return Return the value 0 from a function. (See the section on functions.)

return ( expression )
Return the value of the expression from a function. (See the section on functions.) As an exten-
sion, the parenthesis are not required.

PSEUDO STATEMENTS
These statements are not statements in the traditional sense.They are not executed statements. Their func-
tion is performed at "compile" time.

limits Print the local limits enforced by the local version ofbc. This is an extension.

quit When the quit statement is read, thebc processor is terminated, regardless of where the quit state-
ment is found.For example, "if (0 == 1) quit" will causebc to terminate.

warranty
Print a longer warranty notice. This is an extension.

FUNCTIONS
Functions provide a method of defining a computation that can be executed later. Functions inbc always
compute a value and return it to the caller. Function definitions are "dynamic" in the sense that a function
is undefined until a definition is encountered in the input. That definition is then used until another defini-
tion function for the same name is encountered. The new definition then replaces the older definition.A
function is defined as follows:

definename( parameters) { newline
auto_list statement_list}

A function call is just an expression of the form "name(parameters)".

Parameters are numbers or arrays (an extension). Inthe function definition, zero or more parameters are
defined by listing their names separated by commas.All parameters are call by value parameters.Arrays
are specified in the parameter definition by the notation "name[] ". In the function call, actual parameters
are full expressions for number parameters. The same notation is used for passing arrays as for defining
array parameters. The named array is passed by value to the function. Since function definitions are
dynamic, parameter numbers and types are checked when a function is called.Any mismatch in number or
types of parameters will cause a runtime error. A runtime error will also occur for the call to an undefined
function.

Theauto_listis an optional list of variables that are for "local" use.The syntax of the auto list (if present)
is "auto name, ... ;". (The semicolon is optional.)Eachnameis the name of an auto variable. Arraysmay
be specified by using the same notation as used in parameters. These variables have their values pushed
onto a stack at the start of the function. The variables are then initialized to zero and used throughout the
execution of the function. At function exit, these variables are popped so that the original value (at the time
of the function call) of these variables are restored. The parameters are really auto variables that are initial-
ized to a value provided in the function call. Auto variables are different than traditional local variables
because if function A calls function B, B may access function A’s auto variables by just using the same
name, unless function B has called them auto variables. Dueto the fact that auto variables and parameters
are pushed onto a stack,bc supports recursive functions.

The function body is a list ofbc statements. Again, statements are separated by semicolons or newlines.
Return statements cause the termination of a function and the return of a value. Thereare two versions of
the return statement. The first form, "return ", returns the value 0 to the calling expression. Thesecond
form, "retur n ( expression)", computes the value of the expression and returns that value to the calling
expression. Thereis an implied "retur n (0)" at the end of every function. This allows a function to termi-
nate and return 0 without an explicit return statement.

Functions also change the usage of the variableibase. All constants in the function body will be converted
using the value ofibaseat the time of the function call.Changes ofibasewill be ignored during the execu-
tion of the function except for the standard functionread, which will always use the current value ofibase
for conversion of numbers.

Several extensions have been added to functions. First, the format of the definition has been slightly

GNU Project 2006-06-11 6



bc(1) bc(1)

relaxed. Thestandard requires the opening brace be on the same line as thedefine keyword and all other
parts must be on following lines. This version ofbc will allow any number of newlines before and after the
opening brace of the function.For example, the following definitions are legal.

define d (n) { return (2*n); }
define d (n)

{ r eturn (2*n); }

Functions may be defined asvoid. A void funtion returns no value and thus may not be used in any place
that needs a value. Avoid function does not produce any output when called by itself on an input line.The
key word void is placed between the key word define and the function name.For example, consider the
following session.

define py (y) { print "--->", y, "<---", "0; }
define void px (x) { print "--->", x, "<---", "0; }
py(1)
--->1<---
0
px(1)
--->1<---

Sincepy is not a void function, the call ofpy(1) prints the desired output and then prints a second line that
is the value of the function. Since the value of a function that is not given an explicit return statement is
zero, the zero is printed.For px(1), no zero is printed because the function is a void function.

Also, call by variable for arrays was added.To declare a call by variable array, the declaration of the array
parameter in the function definition looks like "*name[] ". Thecall to the function remains the same as call
by value arrays.

MATH LIBRARY
If bc is invoked with the-l option, a math library is preloaded and the default scale is set to 20.The math
functions will calculate their results to the scale set at the time of their call.The math library defines the
following functions:

s (x) The sine of x, x is in radians.

c (x) The cosine of x, x is in radians.

a (x) The arctangent of x, arctangent returns radians.

l (x) The natural logarithm of x.

e (x) The exponential function of raising e to the value x.

j (n,x) The Bessel function of integer order n of x.

EXAMPLES
In /bin/sh, the following will assign the value of "pi" to the shell variablepi.

pi=$(echo "scale=10; 4*a(1)" | bc -l)

The following is the definition of the exponential function used in the math library. This function is written
in POSIXbc.

scale = 20

/* Uses the fact that eˆx = (eˆ(x/2))ˆ2
When x is small enough, we use the series:

eˆx = 1 + x + xˆ2/2! + xˆ3/3! + ...
*/

define e(x) {
auto a, d, e, f, i, m, v, z

/* Check the sign of x. */
if (x<0) {

GNU Project 2006-06-11 7



bc(1) bc(1)

m = 1
x = - x

}

/* Precondition x. */
z = s cale;
scale = 4 + z + .44*x;
while (x > 1) {

f += 1 ;
x /= 2 ;

}

/* Initialize the variables. */
v = 1 +x
a = x
d = 1

for (i=2; 1; i++) {
e = (a *= x) / (d *= i )
if (e == 0) {

if (f>0) while (f--) v = v *v;
scale = z
if (m) return (1/v);
return (v/1);

}
v += e

}
}

The following is code that uses the extended features ofbc to implement a simple program for calculating
checkbook balances. This program is best kept in a file so that it can be used many times without having to
retype it at every use.

scale=2
print "\nCheck book program!\n"
print " Remember, deposits are negative transactions.\n"
print " Exit by a 0 transaction.\n\n"

print "Initial balance? "; bal = read()
bal /= 1
print "\n"
while (1) {

"current balance = "; bal
"transaction? "; trans = read()
if (trans == 0) break;
bal -= trans
bal /= 1

}
quit

The following is the definition of the recursive factorial function.
define f (x) {

if (x <= 1) return (1);
return (f(x-1) * x);

}

GNU Project 2006-06-11 8



bc(1) bc(1)

READLINE AND LIBEDIT OPTIONS
GNU bc can be compiled (via a configure option) to use the GNUreadline input editor library or the BSD
libedit library. This allows the user to do editing of lines before sending them tobc. It also allows for a
history of previous lines typed.When this option is selected,bc has one more special variable. Thisspe-
cial variable,history is the number of lines of history retained.For readline, a value of -1 means that an
unlimited number of history lines are retained. Setting the value ofhistory to a positive number restricts
the number of history lines to the number given. Thevalue of 0 disables the history feature.The default
value is 100. For more information, read the user manuals for the GNUreadline, history and BSDlibedit
libraries. Onecan not enable bothreadline andlibedit at the same time.

DIFFERENCES
This version ofbc was implemented from the POSIX P1003.2/D11 draft and contains several differences
and extensions relative to the draft and traditional implementations.It is not implemented in the traditional
way using dc(1). This version is a single process which parses and runs a byte code translation of the pro-
gram. Thereis an "undocumented" option (-c) that causes the program to output the byte code to the stan-
dard output instead of running it.It was mainly used for debugging the parser and preparing the math
library.

A major source of differences is extensions, where a feature is extended to add more functionality and addi-
tions, where new features are added. The following is the list of differences and extensions.

LANG environment
This version does not conform to the POSIX standard in the processing of the LANG environment
variable and all environment variables starting with LC_.

names Traditional and POSIXbc have single letter names for functions, variables and arrays.They hav e
been extended to be multi-character names that start with a letter and may contain letters, numbers
and the underscore character.

Strings Strings are not allowed to contain NUL characters.POSIX says all characters must be included in
strings.

last POSIXbc does not have alast variable. Someimplementations ofbc use the period (.) in a simi-
lar way.

comparisons
POSIX bc allows comparisons only in the if statement, the while statement, and the second
expression of the for statement.Also, only one relational operation is allowed in each of those
statements.

if statement, else clause
POSIXbc does not have an else clause.

for statement
POSIXbc requires all expressions to be present in the for statement.

&&, ||, !
POSIXbc does not have the logical operators.

read function
POSIXbc does not have a read function.

print statement
POSIXbc does not have a print statement .

continue statement
POSIXbc does not have a continue statement.

return statement
POSIXbc requires parentheses around the return expression.

GNU Project 2006-06-11 9



bc(1) bc(1)

array parameters
POSIX bc does not (currently) support array parameters in full. The POSIX grammar allows for
arrays in function definitions, but does not provide a method to specify an array as an actual
parameter. (This is most likely an oversight in the grammar.) Traditional implementations ofbc
have only call by value array parameters.

function format
POSIXbc requires the opening brace on the same line as thedefinekey word and theauto state-
ment on the next line.

=+, =-, =*, =/, =%, =ˆ
POSIXbc does not require these "old style" assignment operators to be defined.This version may
allow these "old style" assignments.Use the limits statement to see if the installed version sup-
ports them. If it does support the "old style" assignment operators, the statement "a =- 1" will
decrementa by 1 instead of settinga to the value -1.

spaces in numbers
Other implementations ofbc allow spaces in numbers.For example, "x=1 3" would assign the
value 13 to the variable x. The same statement would cause a syntax error in this version ofbc.

errors and execution
This implementation varies from other implementations in terms of what code will be executed
when syntax and other errors are found in the program. If a syntax error is found in a function
definition, error recovery tries to find the beginning of a statement and continue to parse the func-
tion. Oncea syntax error is found in the function, the function will not be callable and becomes
undefined. Syntaxerrors in the interactive execution code will invalidate the current execution
block. Theexecution block is terminated by an end of line that appears after a complete sequence
of statements.For example,
a = 1
b = 2

has two execution blocks and
{ a = 1
b = 2 }

has one execution block. Any runtime error will terminate the execution of the current execution block. A
runtime warning will not terminate the current execution block.

Interrupts
During an interactive session, the SIGINT signal (usually generated by the control-C character
from the terminal) will cause execution of the current execution block to be interrupted. It will
display a "runtime" error indicating which function was interrupted. After all runtime structures
have been cleaned up, a message will be printed to notify the user thatbc is ready for more input.
All previously defined functions remain defined and the value of all non-auto variables are the
value at the point of interruption. All auto variables and function parameters are removed during
the clean up process. During a non-interactive session, the SIGINT signal will terminate the entire
run ofbc.

LIMITS
The following are the limits currently in place for thisbc processor. Some of them may have been changed
by an installation. Use the limits statement to see the actual values.

BC_BASE_MAX
The maximum output base is currently set at 999. The maximum input base is 16.

BC_DIM_MAX
This is currently an arbitrary limit of 65535 as distributed. Your installation may be different.

BC_SCALE_MAX
The number of digits after the decimal point is limited to INT_MAX digits.Also, the number of
digits before the decimal point is limited to INT_MAX digits.

GNU Project 2006-06-11 10



bc(1) bc(1)

BC_STRING_MAX
The limit on the number of characters in a string is INT_MAX characters.

exponent
The value of the exponent in the raise operation (ˆ) is limited to LONG_MAX.

variable names
The current limit on the number of unique names is 32767 for each of simple variables, arrays and
functions.

ENVIRONMENT VARIABLES
The following environment variables are processed bybc:

POSIXLY_CORRECT
This is the same as the-s option.

BC_ENV_ARGS
This is another mechanism to get arguments tobc. The format is the same as the command line
arguments. Thesearguments are processed first, so any files listed in the environment arguments
are processed before any command line argument files. This allows the user to set up "standard"
options and files to be processed at every invocation ofbc. The files in the environment variables
would typically contain function definitions for functions the user wants defined every time bc is
run.

BC_LINE_LENGTH
This should be an integer specifying the number of characters in an output line for numbers. This
includes the backslash and newline characters for long numbers. As an extension, the value of
zero disables the multi-line feature.Any other value of this variable that is less than 3 sets the line
length to 70.

DIAGNOSTICS
If any file on the command line can not be opened,bc will report that the file is unavailable and terminate.
Also, there are compile and run time diagnostics that should be self-explanatory.

BUGS
Error recovery is not very good yet.

Email bug reports tobug-bc@gnu.org. Be sure to include the word ‘‘bc’’ somewhere in the ‘‘Subject:’’
field.

AUTHOR
Philip A. Nelson
philnelson@acm.org

ACKNOWLEDGEMENTS
The author would like to thank Steve Sommars (Steve.Sommars@att.com) for his extensive help in testing
the implementation.Many great suggestions were given. Thisis a much better product due to his involve-
ment.

GNU Project 2006-06-11 11



GCALCCMD(1) GCALCCMD(1)

NAME
gcalccmd − a console calculator

SYNOPSIS
gcalccmd

DESCRIPTION
gcalccmdis the console version ofgcalctoolthe calculator of the GNOME desktop environment.

SEE ALSO
gcalctool

17 March 2011 1



GCALCTOOL(1) GCALCTOOL(1)

NAME
gcalctool − a desktop calculator

SYNOPSIS
gcalctool[ OPTION ] ...

DESCRIPTION
gcalctool is the official calculator of the GNOME desktop environment.

OPTIONS
−s, −−solve

Solve the equation provided following this option.

−u, −−unittest
Run the unit tests.

−v, −−version
Output version information and exit.

−h, −?, −−help
Prints the command line options.

SEE ALSO
gcalccmd

17 June 2009 1


