escript(1)

NAME

User Commands escript(1)

escript — Erlang scripting support

DESCRIPTION
escript provides support for running short Erlang programs withowirigato compile them first and an
easy way to retrie@ he command line arguments.

EXPORTS

script-name script-argl script-arg2...
escript escript-flags script-name script-argl script-arg?2...

Ericsson AB

escriptruns a script written in Erlang.
Here follows an example.

$ cat factorial
#!/usr/bin/en escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->
try
N = list_to_integer(String),
F = fac(N),
io:format("factorial "w = "wAn", [N,F])
catch
: ->
usage()
end;
main(_) ->
usage().

usage() ->
io:format("usage: factorial integer\n"),
halt(1).

fac(0) -> 1;

fac(N) -> N * fac(N-1).
$ factorial 5

factorial 5 = 120

$ factorial

usage: factorial integer
$ factorial five

usage: factorial integer

The header of the Erlang script in the example differs from a normal Erlang module. The first line
is intended to be the interpreter line, whichokes escript Howeve if you invoke te escriptlike
this

$ escript factorial 5
the contents of the first line does not mattat it cannot contain Erlang code as it will be ignored.

The second line in the example, contains an optional diestithe Emacseditor which causes it
to enter the major mode for editing Erlang source files. If the diesistpresent it must be located
on the second line.

On the third line (or second line depending on the presence of the Emacsadljreedti possible
to give aguments to the emulatauch as

%%! -smp enable -sname factorial -mnesia debug verbose
Such an argument line must start witl§! and the rest of the line will interpreted as arguments to

erts 5.8.5 1

escript(1)

Ericsson AB

User Commands escript(1)

the emulator.

If you know the location of theescript executable, the first line can directlyvgi the path to
escript For instance:

#!/usr/local/bin/escript

As ary other kind of scripts, Erlang scripts will not work on Unix platforms if thecation bit for
the script file is not set. (Usbmod +x script-naméo turn on the xecution bit.)

The rest of the Erlang script file may either contain Erkmgce codean inlined beam fileor an
inlined archive file

An Erlang script file must afays contain the functiomain/1 When the script is run, thmain/1
function will be called with a list of strings representing the argumeren go the script (not
changed or interpreted inyaway).

If the main/1function in the script returns successfuthe «it status for the script will be 0. If an
exception is generated duringeeution, a short message will be printed and the script terminated
with exit status 127.

To return your own non-zero exit code, dadlit(ExitCode)for instance:
halt(1).

Call escript:script_name() from your to script to retrie the pathname of the script (the path-
name is usuallybut not alvays, absolute).

If the file contains source code (as in the example&bib will be processed by the preprocessor
epp This means that you foxample may use pre-defined macros (sucPiM®DULE) as vell as
include directies like the-include_libdirective. For instance, use

-include_lib("kernel/include/file.hrl").
to include the record definitions for the records used bfiltheead_link_info/Ifunction.

The script will be checked for syntactic and semantic correctness before being run. If there are
warnings (such as unused variables)ytivdl be printed and the script will still be run. If there are
errors, thg will be printed and the script will not be run and its exit status will be 127.

Both the module declaration and the export declaration agh#ie/1function are optional.

By default, the script will be interpretedolY can force it to be compiled by including the fallo
ing line somewhere in the script file:

-mode(compile).

Execution of interpreted code is sler than compiled code. If much of theeeution takes place

in interpreted code it may be worthwhile to compileverethough the compilation itself will tak

a little while. It is also possible to supphativeinstead of compile, this will compile the script
using the natie flag, again depending on the characteristics of the escript this could or could not
be worth while.

As mentioned earlieiit is possible to hee a sript which contains precompildaieamcode. In a
precompiled script, the interpretation of the script header is exactly the same as in a script contain-
ing source code. That means that you canenaddeamfile executable by prepending the file with

the lines starting with! and%%! mentioned abee. In a precompiled script, the functiomain/1

must be exported.

As yet another option it is possible toveaan entire Erlang archie in the script. In a arche

script, the interpretation of the script header is exactly the same as in a script containing source
code. That means that you can mak achive file executable by prepending the file with the lines
starting with#! and %%!' mentioned abee. In an achive <ript, the functionmain/1 must be
exported. By dedult themain/1function in the module with the same name as the basename of the
escriptfile will be invoked. This behavior can bererridden by setting the flagescript main Mod-

ule as one of the emulator flags. TMedulemust be the name of a module which hasxqoded

erts 5.8.5 2

escript(1) User Commands escript(1)

main/1function. Seeode(3erl)for more information about archgs and code loading.

In mary cases it is very comnient to hae a keader in the escript, especially on Unix platforms.
But the header is imatt optional. This means that you directly caretate" an Erlang module,
beam file or archie file without adding anheader to them. But then youueaio invoke the script
like this:

$ escript factorial.erl 5
factorial 5 = 120

$ escript factorial.beam 5
factorial 5 = 120

$ escript factorial.zip 5
factorial 5 = 120

escript:.create(FileOrBin, Sections) -> ok | {ok, binary()} | {error term()}
Types:

FileOrBin = filename() | 'binary’

Sections = [Header] Body | Body

Header = shebang | {shebang, Shebang} | comment | {comment, Comment} | {gsnu_ar
EmuArgs}

Shebang = string() | 'default’ | 'undefined’

Comment = string() | 'default’ | 'undefined’

EmuArgs = string() | 'undefined’

Body = {source, SourceCode} | {beam, BeamCode} | {argtipArchive}

SourceCode = BeamCode = ZipAnahi= bnary()

The create/2function creates an escript from a list of sections. The sections camehdrgany
order. An escript lgns with an optionaHeaderfollowed by a mandatorgody. If the header is
present, it doeswabys begin with ashebangpossibly followed by &ommenandemu_argsThe
shebanglefaults to"/usr/bin/erv escript". The comment defaults tdhis is an -*- erlang -*- file"
The created escript can either be returned as a binary or written to file.

As an eample of hav the function can be used, we create an interpreted escript which uses
emu_ags to set some emulator flag. In this case it happens to disable the smp_supplortsy/
extract the different sections from the newly created script:

> Source = "%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n".
"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n"
> jo:format(""s\n", [Source]).
%% Demo
main(_Args) ->
io:format(erlang:system_info(smp_support)).

ok
> {ok, Bin} = escript:create(binaryshebang, comment, {emu_args, "-smp disable"}, {source, list_to_binz
{ok,<<"#!/usr/bin/ewv escript\n%% This is an -*- erlang -*- file\n%%!-smp disabl"...>>}
> file:write_file("demo.escript", Bin).
ok
> os:cmd("escript demo.escript").
"false"
> escript:extract("demo.escript”, []).
{ok,[{shebang,default}, {comment,default}, {emu_args,"-smp disable"},
{source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_su"...>>}]}

Ericsson AB erts 5.8.5 3

escript(1)

User Commands escript(1)

An escript without header can be created fiks:

> file:write_file("demao.erl", ['%% demo.erl\n-module(demao).\n-export([main/1]).\n\n", Source]).
ok
> {ok, , BeamCode} = compile:file("demao.erl", [binadgbug_info]).
{ok,demo,
<<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,109,0,0,0,
79,0,0,0,9,4,100,...>>}
> escript.create("demo.beam”, [{beam, BeamCode})).
ok
> escript:extract("demo.beam", []).
{ok,[{shebang,undefined}, {comment,undefined}, {emu_args,undefined},
{beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
111,109,0,0,0,83,0,0,0,9,...>>}]}
> os:cmd("escript demo.beam").
"true"

Here we create an arghi <ript containing both Erlang code as well as beam code. Then we iter
ate wer dl files in the archie axd collect their contents and some info about them.

> {ok, SourceCode} = file:read_file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}
> escript:create("demo.escript”, [shebang, {aveh[{"demo.erl", SourceCode}, {"demo.beam", BeamCode
ok
> { ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined}, {ae;irchiveBin}]} = escript:exti
{ok,[{shebang,default}, {comment,undefined}, {emu_args,undefined},
{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
152,61,93,107,0,0,0,118,0,...>>}]}
> file:write_file("demo.zip", ArchieBin).
ok
> zip:foldi(fun(N, I, B, A) -> [{N, 1(), B(} | A] end, [], "demo.zip").
{ok,[{"demo.beam",
{file_info,748,regular,read_write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},
<<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
83,0,0,...>>},
{"demo.erl",
{file_info,118,regular,read_write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},
<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}]}

escript:extract(File, Options) -> {ok, Sections} | {errorterm()}

Ericsson AB

Types:

File = filename()

Options =[] | [compile_source]

Sections = Headers Body

Headers = {shebang, Shebang} {comment, Comment} {emu_args, EmuArgs}

erts 5.8.5 4

escript(1)

User Commands escript(1)

Shebang = string() | 'default’ | 'undefined’

Comment = string() | 'default’ | 'undefined’

EmuArgs = string() | 'undefined’

Body = {source, SourceCode} | {source, BeamCode} | {beam, BeamCode} | farchi
ZipArchive}

SourceCode = BeamCode = ZipAnahi= bnary()

Theexract/2 function parses an escript and extracts its sections. This isvthserefcreate/2

All sections are returnedren if they do ot exist in the escript. If a particular section happens to
have the same value as the default value, the extracted value is set to thieédatlif a sction
is missing, the extracted value is set to the atodefined

The compile_sourception only affects the result if the escript contansrcecode. In that case
the Erlang code is automatically compiled gsolurce BeamCodejs returned instead ¢§ource,
SourceCode}

> escript:create("demo.escript”, [shebang, {aveh[{"demo.erl", SourceCode}, {"demo.beam", BeamCode
ok
> { ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined}, {ae;iirchiveBin}]} = escript:exti
{ok,[{{archi ve,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
152,61,93,107,0,0,0,118,0,...>>}
{emu_args,undefined}]}

escript:script_name() -> File

Types:

File = filename()

The script_name/Ofunction returns the name of the escript beimgceted. If the function is
invoked outside the context of an escript, the behavior is undefined.

OPTIONS ACCEPTED BY ESCRIPT

-C

-S:
Only perform a syntactic and semantic check of the script file. Warnings and errors (if any) are written
to the standard output, but the script will not be run. Nitestatus will be 0 if there were no errors,
and 127 otherwise.

-n:
Compile the escript using the +nattiflag.

Ericsson AB

Compile the escript gardless of the value of the mode attribute.
-d:
Dehug the escript. Starts the dmjger loads the module containing timeain/1 function into the

debuggersets a breakpoint imain/1and irvokes main/1 If the module is precompiled, it must be
explicitly compiled with thedebug_infooption.

Interpret the escript gerdless of the value of the mode attribute.

erts 5.8.5 5

erl(1) User Commands erl(1)

NAME
erl - The Erlang Emulator

DESCRIPTION

Theerl program starts an Erlang runtime system. The exact details (for example, vehneigharscript or a
program and which other programs it calls) are system-dependent.

Windows users probably wants to use therl program instead, which runs in its own windwith scroll-
bars and supports command-line editing. €Hgrogram on WWhdows provides no line editing in its shell,
and on WWihdows 95 there is no way to scroll back to text which has scrolfati@&creen. Therl program
must be used, hower, in pipelines or if you want to redirect standard input or output.

Note:
As of ERTS version 5.8 (OTP-R14A) the runtime system will by default bind schedulers to logical proces-
sors using théefault_bindbind type if the amount of schedulers are at least equal to the amount of logical
processors configured, binding of schedulers is supported, and a CPU topol@jsititeaat startup.

If the Erlang runtime system is the only operating system process that binds threads to logical processors,
this improves the performance of the runtime systemwideer, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a perfor
mance penalty instead. If this is the case you, are are advised to unbind the schedulers tisbtg the
command line argument, or byiking erlang:system_flag(scheduler_bind_type, unbound)

EXPORTS
erl <arguments>

Starts an Erlang runtime system.
The arguments can be divided imtmulator flagsflagsandplain arguments
* Any argument starting with the characteiis interpreted as asmulator flag.
As indicated by the name, emulator flags controls the behavior of the emulator.

* Any argument starting with the charactethyphen) is interpreted asflag which should be
passed to the Erlang part of the runtime system, more specifically itotthgstem process,
seeinit(3erl).

Theinit process itself interprets some of these flagsinih@ags It also stores anremaining
flags, theuser flags The latter can be retsied by alling init:get_argument/1

It can be noted that there are a small number of "-" flags whishaotually are emulator
flags, see the description below.

Plain arguments are not interpreted iy aray. They are also stored by thi@it process and
can be retrieed by alling init:get_plain_arguments/tPlain arguments can occur before the
first flag, or after a- flag. Additionally the flag-extra causes erything that follows to
become plain arguments.

Example:

% el +W w -sname arnie +R 9 -s my_init -extra +bertie
(arnie@host)1> init:get_argument(sname).
{ok,[["arnie"]]}

(arnie@host)2> init:get_plain_arguments().

["+bertie"]

Here+W wand+R 9are emulator flagss my_initis an init flag, interpreted hkyit. -sname arnie
is a user flag, stored hwit. It is read by Kernel and will cause the Erlang runtime system to
become distributed. Finallyeverything after -extra (that is, +bertie) is considered as plain

Ericsson AB erts 5.8.5 1

erl(1) User Commands erl(1)

arguments.

% el -myflag 1

1> init;get_argument(myflag).
{ok,[["1"T1}

2> init:get_plain_arguments().

I

Here the user flagnyflag 1is passed to and stored by thi process. It is a user defined flag, pre-
sumably used by some user defined application.

FLAGS
In the following list, init flags are maekl (init flag). Unless otherwise specified, all other flags are user
flags, for which the values can be rateg by calling init:get_argument/1Note that the list of user flags is
not exhaustve, there may be additional, application specific flags which instead are documented in the cor
responding application documentation.

--(init flag):
Everything folloving -- up to the next flag-flag or +flag) is considered plain arguments and can be
retrieved usinginit:get_plain_arguments/O

-Application Par Val
Sets the application configuration paraméar to the \alue Val for the applicatiorApplication see
app(5) andapplication(3erl).

-args_file FileName
Command line arguments are read from theHileName The aguments read from the file replace
the -args_file FileNameflag on the resulting command line.

The fileFileNameshould be a plain % file and may contain comments and command ligaraents.

A comment begins with a # character and continues until next end of line character. Backslash (\\) is
used as quoting character. All command lirguarents accepted leyl are allowed, also thargs_file
FileNameflag. Be careful not to cause circular dependencies between files containkaggthdile

flag, though.

The-extraflag is treated specially. Its scope ends at the end of the fjamfnts following arextra
flag are mwed on he command line into the@xtrasection, i.e. the end of the command line folly
after an-extraflag.

-async_shell_start
The initial Erlang shell does not read user input until the system boot procedure has been completed
(Erlang 5.4 and later). This flag disables the start synchronization feature and lets the shell start in par
allel with the rest of the system.

-boot File
Specifies the name of the boot filgle.boot which is used to start the system. $@3erl). Unless
File contains an absolute path, the system search&sddootin the current an8ROOT /bindirecto-
ries.

Defaults to$ROOT/bin/start.boot

-boot_var Var Dir
If the boot script contains a pathriableVar other thartROOT this variable is expanded Rir. Used
when applications are installed in another directory $R@OT/lih seesystools:make_script/1,2

-code_path_cache
Enables the code path cache of the code sewaxode(3erl)

Ericsson AB erts 5.8.5 2

erl(1)

User Commands erl(1)

-compile Mod1 Mod?2 ..
Compiles the specified modules and then terminates (with non-zero exit code if the compilation of
some file did not succeed). Impligwinput Not recommended - usglc instead.

-config Config
Specifies the name of a configuration filmnfig.configwhich is used to configure applications. See
app(5) andapplication(3erl).

-connect_all false
If this flag is presenglobal will not maintain a fully connected network of distributed Erlang nodes,
and then global name registration cannot be usedylSkeal(3erl).

-cookie Cookie
Obsolete flag without greffect and common misspelling fesetcookieUse-setcookignstead.

-detached
Starts the Erlang runtime system detached from the system console. Useful for running daemons and
backgrounds processes. Impliasinput

-emu_args
Useful for debugging. Prints out the actual arguments sent to the emulator.

-erv \ariable Value
Sets the host OS environmerdriable Variable to the \alue Value for the Erlang runtime system.
Example:

% el -erv DISPLAY gin:0

In this ekample, an Erlang runtime system is started withDHePLAY ervironment variable set to
gin:0.

-eval Exp(init flag):
Makesinit evduate the expressidexpr, seeinit(3erl) .

-extra(init flag):
Everything folloving -extra is considered plain goments and can be retréel using
init:get_plain_arguments/0

-heart
Starts heart beat monitoring of the Erlang runtime systemh&ag(3erl).

-hidden
Starts the Erlang runtime system as a hidden node, if it is run as autkstriinde. Hidden nodes
always establish hidden connections to all other nodes except for nodes in the same global group. Hid-
den connections are not published on either of the connected nodes, i.e. neither of the connected nodes
are part of the result froomodes/O on the other node. See also hidden global groups,
global_group(3erl).

-hosts Hosts
Specifies the IP addresses for the hosts on which Erlang bootrsseave running, see
erl_boot_sewer(3erl). This flag is mandatory if théoader inetflag is present.

The IP addresses must beeagi in the standard form (four decimal numbers separated by periods, for
example"150.236.20.74"Hosts names are not acceptablg, dbroadcast address (preferably limited
to the local network) is.

-id Id:
Specifies the identity of the Erlang runtime system. If it is run as a distilmode|d must be identi-
cal to the name supplied together with thigameor -nameflag.

Ericsson AB erts 5.8.5 3

erl(1) User Commands erl(1)

-init_debug
Makesinit write some debug information while interpreting the boot script.

-instr(emulator flag):
Selects an instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one.
When running an instrumented runtime system, some resource usage data can be obtained and ana-
lysed using the modulimstrument Functionally it behaves exactly like an adinary Erlang runtime
system.

-loader Loader
Specifies the method used kgl prim_loaderto load Erlang modules into the system. See
erl_prim_loader(3erl). Two Loader methods are supporteefile andinet efile means use the local
file system, this is the dailt.inetmeans use a boot server on another machine, anidl tHeostsand
-setcookieflags must be specified as well.Libaderis something else, the user suppliethderport
program is started.

-make
Makes the Erlang runtime systenvake make:all()in the current working directory and then termi-
nate. Seenake(3erl). Implies-noinput

-man Module
Displays the manual page for the Erlang modiddelule Only supported on Unix.

-mode interactive | embedded
Indicates if the system should load code dynamicaitgiactive, or if all code should be loaded dur
ing system initializationdmbedde)l] seecode(3erl) Defaults tointeractive

-name Name
Makes the Erlang runtime system into a disttéal node. This flag wokes dl network servers neces-
sary for a node to become distribd. Seaet_kernel(3erl). It is aso ensured thagpmdruns on the
current host before Erlang is started. S8pmd(1).

The name of the node will idame@HostwhereHostis the fully qualified host name of the current
host. For short names, use teeameflag instead.

-noinput
Ensures that the Erlang runtime systewengries to read aninput. Implies-noshell
-noshell

Starts an Erlang runtime system with no shell. This flag makes it possibleetdhbeErlang runtime
system as a component in a series of UNIX pipes.

-nostick
Disables the stigkdirectory facility of the Erlang code seryeeecode(3erl)

-oldshell
Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.

-pa Dirl Dir2 ...
Adds the specified directories to the beginning of the code path, simitadé&add pathsa/lSee
code(3erl) As an dternative -pa, if sevaal directories are to be prepended to the code and the
directories hae a ®@mmon parent directoryhat parent directory could be specified in BRL LIBS
environment variable. Semde(3erl)

-pz Dirl Dir2 ..:
Adds the specified directories to the end of the code path, similaode:add_pathsz/1See
code(3erl)

-remsh Node
Starts Erlang with a remote shell connecteNdde

Ericsson AB erts 5.8.5 4

erl(1) User Commands erl(1)

-rsh Program:
Specifies an alternag © rsh for starting a shkee rode on a remote host. Saave(3erl).

-run Mod [Func [Argl, Arg2, ...Jlinit flag):
Makesinit call the specified functiorzunc defaults tostart If no arguments are provided, the func-
tion is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking fAmglisaArg2,...]
as argument. All arguments are passed as stringsigaerl) .

-s Mod [Func [Argl, Arg2, .. Jiinit flag):
Makesinit call the specified functiorzunc defaults tostart If no arguments are provided, the func-
tion is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking fAmglisfArg2,...]
as argument. All arguments are passed as atom@igaerl) .

-setcookie Cookie
Sets the magic cookie of the nodeCtnokie seeerlang:set_cookie/2

-shutdown_time Time
Specifies hev long time (in milliseconds) thimit process is allowed to spend shutting down the sys-
tem. If Timems hae dapsed, all processes still existing are killed. Defaultsftoity.

-sname Name
Makes the Erlang runtime system into a distributed node, similavatme but the host name portion
of the node namBame@Hostvill be the short name, not fully qualified.

This is sometimes the only way to run distributed Erlang if the DNS (Domain Name System) is not
running. There can be no communication between nodes running witthtraeflag and those run-
ning with the-nameflag, as node names must be unique in distributed Erlang systems.

-smp [enable|auto|disable]
-smp enabl@nd-smpstarts the Erlang runtime system with SMP support enabled. Thisamh#ynb
runtime system with SMP support igadable. -smp autostarts the Erlang runtime system with SMP
support enabled if it isvailable and more than one logical processor are detesteg. disablestarts a
runtime system without SMP support. By algt -smp autawill be used unless a conflicting parameter
has been passed, theamp disablewill be used. Currently only thénybrid parameter conflicts with
-smp auto

NOTE The runtime system with SMP support will not heilable on all supported platforms. See
also thetSflag.

-versior(emulator flag):
Makes the emulator print out its version number. The sarad &¥.

EMULATOR FLAGS
erl invokes the code for the Erlang emulator (virtual machine), which supports the following flags:

+a size
Suggested stack size, in kilords, for threads in the async-thread pool. Valid range is 16-8192 kilo-
words. The default suggested stack size is 16nkitds, i.e, 64 kilobyte on 32-bit architectures. This
small de&ult size has been chosen since the amount of async-threads might be quite largewifthe def
size is enough for drérs delvered with Erlang/@P, but might not be sufficiently large for other
dynamically linked in dxiers that use thdriver_async() functionality. Note that the value passed is
only a suggestion, and it mightem be gnored on some platforms.

+A size
Sets the number of threads in async thread pool, valid range is 0-1024. Default is 0.
+Bc|d]i]:
The ¢ option males Ctrl-C interrupt the current shell instead ofdking the emulator break handler.
Thed option (same as specifyingB without an extra option) disables the break handler.i Tpdion
makes the emulator ignoreyeloreak signal.

Ericsson AB erts 5.8.5 5

erl(1)

User Commands erl(1)

If the c option is used witloldshellon Unix, Ctrl-C will restart the shell process rather than interrupt
it.

Note that on Whdows, this flag is only applicable faverl, not erl (oldshel). Note also thaCtrl-
Breakis used instead @@trl-C on Windows.

+C.

Disable compensation for sudden changes of system time.

Normally, erlang:now/Owill not immediately reflect sudden changes in the system time, in order to
keep timers (includingeceive-aftey working. Instead, the time maintained égang:now/Qis slonly
adjusted twards the ner system time. (Slowly means in one percent adjustments; if the timebg of
one minute, the time will be adjusted in 100 minutes.)

When the+c option is gven, this slev adjustment will not tak pace. Insteaderlang:now/Owill

always reflect the current system time. Note that timers are basexdaog:now/0 If the system time

jumps, timers then time out at the wrong time.

+d:

If the emulator detects an internal error (or runs out of memory), it will by default generate both a
crash dump and a core dump. The core dump wilkeler, not be very useful since the content of
process heaps is destroyed by the crash dump generation.

The +d option instructs the emulator to only produce a core dump and no crash dump if an internal
error is detected.

Calling erlang:halt/1with a string argument will still produce a crash dump.

+e Number

Set max number of ETS tables.

+ec.

Force thecompressedption on all ETS tables. Only intended for test arauation.

+fnl:

The VM works with file names as if there encoded using the 1SO-latin-1 encoding, disalig
Unicode characters with codepoints beyond 255. This is default on operating systemeetiranba
parent file naming, i.e. all Unixes except MacOSX.

+fnu:
The VM works with file names as if there encoded using UTF-8 (or some other system specific
Unicode encoding). This is the deft on operating systems that enforce Unicode encoding, ire. W
dows and MacOSX.
By enabling Unicode file name translation on systems where this is not default, you open up to the
possibility that some file names can not be interpreted by the VM and therefore will be returned to the
program as r& binaries. The option is therefore considered experimental.

+fna:
Selection betweenfnl and+fnu is done based on the current locale settings in the OS, meaning that if
you hare st your terminal for UTF-8 encoding, the filesystemxpegeted to use the same encoding
for filenames (use with care).

+hms Size

Ericsson AB

Sets the default heap size of processes to th&riee

erts 5.8.5 6

erl(1)

User Commands erl(1)

+hmbs Size

Sets the default binary virtual heap size of processes to thgizeze

+K true | false

Enables or disables the kernel poll functionality if the emulator supports it. Deftaltaédisabled).
If the emulator does not support kernel poll, and-tKeflag is passed to the emulatarwarning is
issued at startup.

+l:

Enables auto load tracing, displaying info while loading code.

+MFlag Value

Memory allocator specific flags, seds_alloc(3erl)for further information.

+P Number

Sets the maximum number of concurrent processes for this systenbermust be in the range
16..134217727. Default is 32768.

+R ReleaseNumber

Sets the compatibility mode.

The distribution mechanism is not backwards compatible bguttefThis flags sets the emulator in
compatibility mode with an earlier Erlang/OTP rele&sdeaseNumbeiThe release number must be
in the range’..<current release> This limits the emulatemaking it possible for it to communicate
with Erlang nodes (as well as C- andalabdes) running that earlier release.

For example, an R10 node is not automatically compatible with an R9 node, but R10 nodes started
with the+R 9flag can co-eist with R9 nodes in the same distributed Erlang system atieeR9-com-
patible.

Note: Male aure all nodes (Erlang-, C-, andvdandes) of a distributed Erlang system is of the same
Erlang/O’P release, or from twvdifferent Erlang/OTP releases X angwhereall Y nodes hae mm-
patibility mode X.

For example: A distributed Erlang system can consist of R10 nodes, or of R9 nodes and R9-compati-
ble R10 nodes, but not of R9 nodes, R9-compatible R10 nodes and "regular" R10 nodes, as R9 and
"regular" R10 nodes are not compatible.

+r.

Force ets memory block to be el on realloc.

+rg ReaderGroupsLimit

Limits the amount of reader groups used by read/write locks optimized for read operations in the
Erlang runtime system. By default the reader groups limit equals 8.

When the amount of schedulers is less than or equal to the reader groups limit, each scheduler has its
own reader group. When the amount of schedulers getahan the reader groups limit, schedulers
share reader groups. Shared reader grougsadies read lock and read unlock performance while a
large amount of reader groups degrades write lock performance, so the limit is & tratleeén per
formance for read operations and performance for write operations. Each reader group currently con-
sumes 64 byte in each read/write lock. Also note that a runtime system using shared reader groups
benefits frombinding schedulers to logical pocessorssince the reader groups are distributed better
between schedulers.

+S Schedulers:SchedulerOnline

Ericsson AB

Sets the amount of scheduler threads to create and scheduler threads to set online when SMP support
has been enabled.aNt range for both values are 1-1024. If the Erlang runtime system is able to

erts 5.8.5 7

erl(1)

User Commands erl(1)

determine the amount of logical processors configured and logical procesalaisiea Schedulers
will default to logical processors configured, @chedulersOnlingvill default to logical processors
awailable; otherwise, the default values will beSthedulersnay be omitted ifSchedulerOnlings not
and vice versa. The amount of schedulers online can be changed at run tiedangsys-
tem_flag(schedulers_online, SchedulersOnline)

This flag will be ignored if the emulator doesihaveSMP support enabled (see tsenp flag).

+sFlag Value

Ericsson AB

Scheduling specific flags.

+sbt BindType
Set scheduler bind type. Currently vafithdType:
u:
Same agrlang:system_flag(scheduler_bind_type, unbound)

ns
Same agrlang:system_flag(scheduler_bind_type, no_spread)

ts:
Same agrlang:system_flag(scheduler_bind_type, thread_spread)

ps
Same agrlang:system_flag(scheduler_bind_type, processor_spread)
s
Same aegrlang:system_flag(scheduler_bind_type, spread)

nnts
Same agrlang:system_flag(scheduler_bind_type, no_node_thread_spread)

nnps
Same agrlang:system_flag(scheduler_bind_type, no_node_processor_spread)
tnnps
Same aegrlang:system_flag(scheduler_bind_type, thread _no_node_processor_spread)
db:

Same agrlang:system_flag(scheduler_bind_type, default_bind)

Binding of schedulers is currently only supported owarelinux, Solaris, FreeBSD, andidows
systems.

If no CPU topology is\&ilable when thersbt flag is processed aRIndTypeis ary other type than

u, the runtime system will fail to start. CPU topology can be defined usingstiidélag. Note that
the +sct flag may heae o be mssed before thesbt flag on the command line (in case no CPU
topology has been automatically detected).

The runtime system will by default bind schedulers to logical processors usinigfthdt bind
bind type if the amount of schedulers are at least equal to the amount of logical processors config-
ured, binding of schedulers is supported, and a CPU topologsilistde at startup.

NOTE:If the Erlang runtime system is the only operating system process that binds threads to logi-
cal processors, this impres the performance of the runtime systemweeer, if other operating

system processes (as foraenple another Erlang runtime system) also bind threads to logical pro-
cessors, there might be a performance penalty instead. If this is the case you, are advised to unbind
the schedulers using thesbtu command line argument, or byiking erlang:system_flag(sched-
uler_bind_type, unbound)

erts 5.8.5 8

erl(1)

Ericsson AB

User Commands erl(1)

For more information, seerlang:system_flag(scheduler_bind_type, SchedulerBindType)

+sct CpuTopology

* <ld> = integer(); when 0 =< <Id> =< 65535

* <|dRange> = <ld>-<Id>

* <|dOrldRange> = <ld> | <IdRange>

* <|dList> = <ldOrldRange>,<ldOrldRange> | <ldOrldRange>
* <Logicallds> = L<IdList>

* <Threadlds> = T<IdList> | t<ldList>

* <Corelds> = C<IdList> | c<IdList>

* <Processorlds> = P<IdList> | p<IdList>

* <Nodelds> = N<IdList> | n<IdList>

* <|dDefs> = <Logicallds><Threadlds><Corelds><Pocessorlds><Nodelds> | <Lgi-
callds><Threadlds><Corelds><Nodelds><Processorlds>

* CpuTopology = <ldDefs>:<IdDefs> | <ldDefs>

Uppercase letters signify real identifiers andvé-case letters signifyake identifiers only used for
description of the topology. Identifiers passed as real identifiers may be used by the runtime system
when trying to access specific hardware and if ene not correct the behar is undefined. &ked

logical CPU identifiers are not accepted since there is no point in defining the CPU topology with-
out real logical CPU identifiers. Thread, core, processar node identifiers may be left out. If left

out, thread id defaults i), core id defaults taO, processor id defaults 0, and node id will be

left undefined. Either each logical processor must belong to one and only one NUMA node, or no
logical processors must belong toyalJMA nodes.

Both increasing and decreasingiRange>s ae allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the systenbhmvea
unique identifier. Processor identifiers are also system wide. Core identifiers are processor wide.
Thread identifiers are core wide.

The order of the identifier types imply the hierarai the CPU topology. Valid orders are either
<Logicallds><Threadlds><Corelds><Processorlds><Nodelds> or <Logicallds><Threa-
dlds><Corelds><Nodelds><Processorlds>That is, thread is part of a core which is part of a pro-
cessor which is part of a NUMA node, or thread is part of a core which is part of a NUMA node
which is part of a processor. A cpu topology can consist of both processor external, and processor
internal NUMA nodes as long as each logical processor belongs to one and only one NUMA node.
If <Processorlds>is left out, its default position will be befortNodelds> That is, the default is
processor external NUMA nodes.

If a list of identifiers is used in aridDefs>:

* <L ogicallds> have © be aist of identifiers.

* At least one other identifier type apart frerhogicallds> also hae o havea list of identifiers.
* All lists of identifiers hae o produce the same amount of identifiers.

A simple example. A single quad core processor may be described this way:

erts 5.8.5 9

erl(1) User Commands erl(1)

% erl +sct LO-3c0-3

1> erlang:system_info(cpu_topology).

[{processor,[{core,{logical,0}},
{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}1}]

A little more complicated examplew® quad core processors. Each processor in its own NUMA
node. The ordering of logical processors is a little weird. This in orderé¢oagietter example of
identifier lists:

% el +sct L0-1,3-2c0-3p0ON0:L7,4,6-5c0-3p1N1
1> erlang:system_info(cpu_topology).
[{node,[{processor,[{core,{logical,0}},
{core,{logical,1}},
{core,{logical,3}},
{core,{logical,2}}]}},
{node,[{processor,[{core,{logical,7}},
{core,{logical,4}},
{core,{logical,6}},
{core,{logical,5}}]}}]

As long as real identifiers are correct it is okay to pass a CPU topology that is not a correct descrip-
tion of the CPU topology. When used with care this can actually be very useful. This in order to
trick the emulator to bind its schedulers as yantw For example, if you want to run multiple
Erlang runtime systems on the same machine, you want to reduce the amount of schedulers used
and manipulate the CPU topology so thaythiad to different logical CPUs. An example, withdw

Erlang runtime systems on a quad core machine:

% el +sct L0O-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
% el +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

In this example each runtime systenvén&avo schedulers each online, and all schedulers online will
run on different cores. If we change to one scheduler online on one runtime system, and three
schedulers online on the othdf schedulers online will still run on different cores.

Note that adked CPU topology that does not reflectvithe real CPU topology looks Ekis likely
to decrease the performance of the runtime system.

For more information, seerlang:system_flag(cpu_topologyCpuTopology).

+swt very_low|low|medium|high|very_high
Set scheduler akeup threshold. Default imedium The threshold determines when take y
sleeping schedulers when more work than can be handled by curreatly shedulers exist. A
low threshold will cause earlier akeups, and a high threshold will cause latetkaups. Early
wakeaups will distribute work wer multiple schedulersalster but work will more easily bounce
between schedulers.

NOTE:This flag may be renved or changed at antime without prior notice.

Ericsson AB erts 5.8.5 10

erl(1) User Commands erl(1)

+sss size
Suggested stack size, in kilords, for scheduler threads. Valid range is 4-8192wkitds. The
default stack size is OS dependent.

+t size
Set the maximum number of atoms the VM can handle. Default is 1048576.

+T Level
Enables modified timing and sets the modified timinglleCurrently valid range is 0-9. The timing of
the runtime system will change. A higlvéeusually means a greater change thannal&vd. Chang-
ing the timing can be very useful for finding timing related bugs.

Currently modified timing affects the following:

Process spawning:
A process callinggpawn spawn_link spawn_monitaror spawn_optwill be scheduled out immedi-
ately after completing the call. When higher modified timingdéeare used, the caller will also
sleep for a while after being scheduled out.

Context reductions:
The amount of reductions a process is a allowed to use before being scheduled out is increased or
reduced.

Input reductions:
The amount of reductions performed before checking I/O is increased or reduced.

NOTE: Performance will suffer when modified timing is enabled. This flagligintended for testing
and debugging. Also note thagturn_toandreturn_fromtrace messages will be lost when tracing on
the spawn BIFs. This flag may be rerat or changed at antime without prior notice.

+V:
Makes the emulator print out its version number.

+v:
Verbose.

+Ww | i
Sets the mapping of warning messagesefoor_logge. Messages sent to the error logger using one
of the warning routines can be mapped either to errors (default), warriigs\, or info reports{W
i). The current mapping can be retee using error_logge:warning_map/0 Seeerror_logger(3erl)
for further information.

+zFlag Value
Miscellaneous flags.

+zdbbl size
Set the distribution ddfer busy limit @ist_buf busy_limit) in kilobytes. Valid range is 1-2097151.
Default is 1024.

A lamger tuffer limit will allow processes touffer more outgoing messagegenthe distritution.
When the bffer limit has been reached, sending processes will be suspended untiff¢hesize
has shrunk. Theuffer limit is per distribution channel. A higher limit will\g@ lower lateng and
higher throughput at the expense of higher memory usage.

ENVIRONMENT VARIABLES
ERL_CRASH_DUMP
If the emulator needs to write a crash dump, the value of this variable will be the file name of the crash
dump file. If the variable is not set, the name of the crash dump file vaHl berash.dumpn the cur
rent directory.

Ericsson AB erts 5.8.5 11

erl(1) User Commands erl(1)

ERL_CRASH_DUMP_NICE
Unix systemslf the emulator needs to write a crash dump, it will use #ghgevof this variable to set
the nice value for the process, thus lowering its priority. Thevalite range is 1 through 39 (higher
values will be replaced with 39). The highest value, 39, wiltdie process the lowest priority.

ERL_CRASH_DUMP_SECONDS
Unix systemsThis variable gies the number of seconds that the emulator will be allowed to spend
writing a crash dump. When thevgh number of seconds ha dapsed, the emulator will be termi-
nated by a SIGALRM signal.

ERL_AFLAGS
The content of this environment variable will be added to the beginning of the command dirie for

The-extraflag is treated specially. Its scope ends at the end of the environment variable cogtent. Ar
ments following anextraflag are maed on he command line into thextra section, i.e. the end of
the command line following after aaxtraflag.

ERL_ZFLAGSNndERL FLAGS
The content of these environment variables will be added to the end of the commandelihe for

The-extraflag is treated specially. Its scope ends at the end of the environment variable cogtent. Ar
ments following anextraflag are maed on he command line into thextra section, i.e. the end of
the command line following after aaxtraflag.

ERL_LIBS
This environment ariable contains a list of additional library directories that the code server will
search for applications and add to the code pathc@k(3erl)

ERL_EPMD_ADDRESS
This environment variable may be set to a comma-separated list of IP addresses, in which case the
epmd daemon will listen only on the specified address(es) and on the loopback address (which is
implicitly added to the list if it has not been specified).

ERL_EPMD_PORT
This environment ariable can contain the port number to use when communicatingpritd. The
default port will work fine in most cases. A different port can be specified to athdes of indepen-
dent clusters to co-exist on the same host. All nodes in a cluster must use the same epmd port number.

CONFIGURATION
The standard Erlang/OTP system can be re-configured to change the default behavior on start-up.

The .erlang Start-up File:
When Erlang/OTP is started, the system searches for a file named .erlang in the directory where
Erlang/OTP is started. If not found, the usddme directory is searched for an .erlang file.

If an .erlang file is found, it is assumed to contain valid Erlang expressions. These expressions are
evduated as if thgwere input to the shell.

A typical .erlang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add_path("/home/calvin/test/ebin™).
code:add_path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user_default and shell_default:
Functions in the shell which are not prefixby a module name are assumed to be functional objects
(Funs), built-in functions (BIFs), or belong to the module user_default or shell_default.

Ericsson AB erts 5.8.5 12

erl(1) User Commands erl(1)

To include pwate shell commands, define them in a module user_default and add the follogving ar
ment as the first line in the .erlang file.

code:load_abs("..../user_default").

erl:
If the contents of .erlang are changed and \efgriversion of user_default is defined, it is possible to
customize the Erlang/OTP environment. Morevpdul changes can be made by supplying command
line arguments in the start-up script erl. Refer to erl(1)imit@erl) for further information.

SEE ALSO
init(3erl), erl_prim_loader(3erl), erl_boot _sewer(3erl), code(3erl) application(3erl), heart(3erl),
net_kernel(3erl), auth(3erl), make(3erl), epmd(1), erts_alloc(3erl)

Ericsson AB erts 5.8.5 13

erl_call(1) User Commands erl_call(1)

NAME
erl_call — Call/Start a Distributed Erlang Node

DESCRIPTION
erl_call males it possible to start and/or communicate with a distributed Erlang nodeullt isgon the
erl_interfacelibrary as an example application. Its purpose is to use an Unix shell script to interact with a
distributed Erlang node. It performs all communication with the Erlemgserver using the standard
Erlang RPC facility. It does not requireyaspecial software to be run at the Erlang target node.

The main use is to either start a disitéddl Erlang node or to malan adinary function call. Hovever, it is
also possible to pipe an Erlang moduleetb call and h&e it compiled, or to pipe a sequence of Erlang
expressions to beveluated (similar to the Erlang shell).

Options, which causstdin to be read, can be used with advantage as scripts from within (Unix) shell
scripts. Another nice use efl_call could be from (http) CGI-bin scripts.

EXPORTS
erl_call <options>

Each option flag is described belavith its name, type and meaning.

-a [Mod [Fun [Args]]]]:
(optional): Applies the specified function and returns the reMdid must be specified, e
eve startand[] are assumed for unspecifiedn and Args, respectiely. Args should be in
the same format as farlang:apply/3 Note that this flag tads exactly one argument, so
quoting may be necessary in order to grtdgud, Fun and Args in a manner dependent on
the behavior of your command shell.

-c Cookie:
(optional): Use this option to specify a certain cookie. If no cookie is specified, the
“/.erlang.cookidfile is read and its content are used as cookie. The Erlang nodanteon
communicate with must kia the same cookie.

-d:
(optional): Debug mode. This causes all 10 to be output to thé/fdd_call.out.Nodename
whereNodenamés the node name of the Erlang node in question.

-e:
(optional): Reads a sequence of Erlang expressions, separatedangl '‘ended with a.”,
from stdin until EOF (Control-D). Evaluates the expressions and returns the result from the
last expression. Returiisk,Result}if successful.

-h HiddenName:

(optional): Specifies the name of the hidden node dhlatcall represents.
-m:

(optional): Reads an Erlang module frastdinand compiles it.
-n Node:

(one of-n, -name -snames required): Has the same meaningrasmeand can still be used
for backwards compatibility reasons.

-name Node:
(one of-n, -name-snameis required):Nodeis the name of the node to be started or commu-
nicated with. It is assumed thidbdeis started witherl -name which means that fully quali-
fied long node names are used. If theption is gven, an Erlang node will (if necessary) be
started witherl -name
_q:
(optional): Halts the Erlang node specified with the -n switch. This switerides the -s
switch.

Ericsson AB erl_interface 3.7.5 1

erl_call(1) User Commands erl_call(1)

-r:
(optional): Generates a random name of the hidden nodethagll represents.

-S:
(optional): Starts a distribted Erlang node if necessary. This means that in a sequence of
calls, where the-§ and -n Node are constant, only the first call will start the Erlang node.
This makes the rest of the communication vest.f This flag is currently onlyailable on
the Unix platform.

-sname Node:
(one of-n, -name-snameis required):Nodeis the name of the node to be started or commu-
nicated with. It is assumed thidbdeis started witherl -snamewhich means that short node
names are used. 1§ option is gien, an Erlang node will be started (if necessary) with
-shame

-V:
(optional): Prints a lot ofverbosanformation. This is only useful for the doper and main-
tainer oferl_call.

-X ErlScript:
(optional): Specifies another name of the Erlang start-up script to be used. If not specified, the
standarckrl start-up script is used.

EXAMPLES
Starts an Erlang node and catang:time/0

erl_call -s -a 'erlang time’ -n madonna
{18,27,34}

Terminates an Erlang node by calliagang:halt/Q
erl_call -s -a 'erlang halt’ -n madonna

An apply with sgeral arguments.
erl_call -s -a 'lists map [{math,sqrt},[1,4,9,16,25]]' -n madonna

Evaluates a couple of expressiofke input ends with EOF (Control-D).

erl_call -s -e -n madonna
statistics(runtime),

X=1,

Y=2,
{_,T}=statistics(runtime),
{X+Y, T}

"D

{ok,{3,0}}

Compiles a module and runsAtgain, the input ends with EOF (Control-D) . (In the example shown, the
output has been formatted afterwards).

erl_call -s -m -a lolita -n madonna

-module(lolita).

-compile(export_all).

start() ->
P = processes(),
F = fun(X) -> {X,process_info(X,registered_name)} end,
lists:map(F,[],P).

Ericsson AB erl_interface 3.7.5 2

erl_call(1) User Commands erl_call(1)

"D
[{<madonna@chias.du.etx.ericsson.se,0,0>,
{registered_name,init}},
{<madonna@chias.du.etx.ericsson.se,2,0>,
{registered_name,erl_prim_loader}},
{<madonna@chias.du.etx.ericsson.se,4,0>,
{registered_name,error_logger}},
{<madonna@chias.du.etx.ericsson.se,5,0>,
{registered_name,application_controller}},
{<madonna@chias.du.etx.ericsson.se,6,0>,
{registered_name,kernel}},
{<madonna@chias.du.etx.ericsson.se,7,0>,
(1}
{<madonna@chias.du.etx.ericsson.se,8,0>,
{registered_name,kernel_sup}},
{<madonna@chias.du.etx.ericsson.se,9,0>,
{registered_name,net_sup}},
{<madonna@chias.du.etx.ericsson.se,10,0>,
{registered_name,net_kernel}},
{<madonna@chias.du.etx.ericsson.se,11,0>,
(1}
{<madonna@chias.du.etx.ericsson.se,12,0>,
{registered_name,global_name_server}},
{<madonna@chias.du.etx.ericsson.se,13,0>,
{registered_name,auth}},
{<madonna@chias.du.etx.ericsson.se,14,0>,
{registered_name,rex}},
{<madonna@chias.du.etx.ericsson.se,15,0>,
(1}
{<madonna@chias.du.etx.ericsson.se,16,0>,
{registered_name,file_server}},
{<madonna@chias.du.etx.ericsson.se,17,0>,
{registered_name,code_server}},
{<madonna@chias.du.etx.ericsson.se,20,0>,
{registered_name,user}},
{<madonna@chias.du.etx.ericsson.se,38,0>,

1l

Ericsson AB erl_interface 3.7.5 3

