/* Copyright (C) 1991-2001, 2003-2007, 2009-2014 Free Software Foundation, Inc. NOTE: The canonical source of this file is maintained with the GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #ifdef _LIBC # define HAVE_STRUCT_ERA_ENTRY 1 # define HAVE_TM_GMTOFF 1 # define HAVE_TM_ZONE 1 # define HAVE_TZNAME 1 # define HAVE_TZSET 1 # include "../locale/localeinfo.h" #else # include # if FPRINTFTIME # include "fprintftime.h" # else # include "strftime.h" # endif #endif #include #include #if HAVE_TZNAME && !HAVE_DECL_TZNAME extern char *tzname[]; #endif /* Do multibyte processing if multibyte encodings are supported, unless multibyte sequences are safe in formats. Multibyte sequences are safe if they cannot contain byte sequences that look like format conversion specifications. The multibyte encodings used by the C library on the various platforms (UTF-8, GB2312, GBK, CP936, GB18030, EUC-TW, BIG5, BIG5-HKSCS, CP950, EUC-JP, EUC-KR, CP949, SHIFT_JIS, CP932, JOHAB) are safe for formats, because the byte '%' cannot occur in a multibyte character except in the first byte. The DEC-HANYU encoding used on OSF/1 is not safe for formats, but this encoding has never been seen in real-life use, so we ignore it. */ #if !(defined __osf__ && 0) # define MULTIBYTE_IS_FORMAT_SAFE 1 #endif #define DO_MULTIBYTE (! MULTIBYTE_IS_FORMAT_SAFE) #if DO_MULTIBYTE # include static const mbstate_t mbstate_zero; #endif #include #include #include #include #include #ifdef COMPILE_WIDE # include # define CHAR_T wchar_t # define UCHAR_T unsigned int # define L_(Str) L##Str # define NLW(Sym) _NL_W##Sym # define MEMCPY(d, s, n) __wmemcpy (d, s, n) # define STRLEN(s) __wcslen (s) #else # define CHAR_T char # define UCHAR_T unsigned char # define L_(Str) Str # define NLW(Sym) Sym # define MEMCPY(d, s, n) memcpy (d, s, n) # define STRLEN(s) strlen (s) #endif /* Shift A right by B bits portably, by dividing A by 2**B and truncating towards minus infinity. A and B should be free of side effects, and B should be in the range 0 <= B <= INT_BITS - 2, where INT_BITS is the number of useful bits in an int. GNU code can assume that INT_BITS is at least 32. ISO C99 says that A >> B is implementation-defined if A < 0. Some implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift right in the usual way when A < 0, so SHR falls back on division if ordinary A >> B doesn't seem to be the usual signed shift. */ #define SHR(a, b) \ (-1 >> 1 == -1 \ ? (a) >> (b) \ : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) /* Bound on length of the string representing an integer type or expression T. Subtract 1 for the sign bit if t is signed; log10 (2.0) < 146/485; add 1 for integer division truncation; add 1 more for a minus sign if needed. */ #define INT_STRLEN_BOUND(t) \ ((sizeof (t) * CHAR_BIT - 1) * 146 / 485 + 2) #define TM_YEAR_BASE 1900 #ifndef __isleap /* Nonzero if YEAR is a leap year (every 4 years, except every 100th isn't, and every 400th is). */ # define __isleap(year) \ ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) #endif #ifdef _LIBC # define tzname __tzname # define tzset __tzset #endif #if !HAVE_TM_GMTOFF /* Portable standalone applications should supply a "time.h" that declares a POSIX-compliant localtime_r, for the benefit of older implementations that lack localtime_r or have a nonstandard one. See the gnulib time_r module for one way to implement this. */ # undef __gmtime_r # undef __localtime_r # define __gmtime_r gmtime_r # define __localtime_r localtime_r #endif #ifndef FPRINTFTIME # define FPRINTFTIME 0 #endif #if FPRINTFTIME # define STREAM_OR_CHAR_T FILE # define STRFTIME_ARG(x) /* empty */ #else # define STREAM_OR_CHAR_T CHAR_T # define STRFTIME_ARG(x) x, #endif #if FPRINTFTIME # define memset_byte(P, Len, Byte) \ do { size_t _i; for (_i = 0; _i < Len; _i++) fputc (Byte, P); } while (0) # define memset_space(P, Len) memset_byte (P, Len, ' ') # define memset_zero(P, Len) memset_byte (P, Len, '0') #elif defined COMPILE_WIDE # define memset_space(P, Len) (wmemset (P, L' ', Len), (P) += (Len)) # define memset_zero(P, Len) (wmemset (P, L'0', Len), (P) += (Len)) #else # define memset_space(P, Len) (memset (P, ' ', Len), (P) += (Len)) # define memset_zero(P, Len) (memset (P, '0', Len), (P) += (Len)) #endif #if FPRINTFTIME # define advance(P, N) #else # define advance(P, N) ((P) += (N)) #endif #define add(n, f) \ do \ { \ size_t _n = (n); \ size_t _w = (width < 0 ? 0 : width); \ size_t _incr = _n < _w ? _w : _n; \ if (_incr >= maxsize - i) \ return 0; \ if (p) \ { \ if (digits == 0 && _n < _w) \ { \ size_t _delta = width - _n; \ if (pad == L_('0')) \ memset_zero (p, _delta); \ else \ memset_space (p, _delta); \ } \ f; \ advance (p, _n); \ } \ i += _incr; \ } while (0) #if FPRINTFTIME # define add1(C) add (1, fputc (C, p)) #else # define add1(C) add (1, *p = C) #endif #if FPRINTFTIME # define cpy(n, s) \ add ((n), \ do \ { \ if (to_lowcase) \ fwrite_lowcase (p, (s), _n); \ else if (to_uppcase) \ fwrite_uppcase (p, (s), _n); \ else \ { \ /* Ignore the value of fwrite. The caller can determine whether \ an error occurred by inspecting ferror (P). All known fwrite \ implementations set the stream's error indicator when they \ fail due to ENOMEM etc., even though C11 and POSIX.1-2008 do \ not require this. */ \ fwrite (s, _n, 1, p); \ } \ } \ while (0) \ ) #else # define cpy(n, s) \ add ((n), \ if (to_lowcase) \ memcpy_lowcase (p, (s), _n LOCALE_ARG); \ else if (to_uppcase) \ memcpy_uppcase (p, (s), _n LOCALE_ARG); \ else \ MEMCPY ((void *) p, (void const *) (s), _n)) #endif #ifdef COMPILE_WIDE # ifndef USE_IN_EXTENDED_LOCALE_MODEL # undef __mbsrtowcs_l # define __mbsrtowcs_l(d, s, l, st, loc) __mbsrtowcs (d, s, l, st) # endif # define widen(os, ws, l) \ { \ mbstate_t __st; \ const char *__s = os; \ memset (&__st, '\0', sizeof (__st)); \ l = __mbsrtowcs_l (NULL, &__s, 0, &__st, loc); \ ws = (wchar_t *) alloca ((l + 1) * sizeof (wchar_t)); \ (void) __mbsrtowcs_l (ws, &__s, l, &__st, loc); \ } #endif #if defined _LIBC && defined USE_IN_EXTENDED_LOCALE_MODEL /* We use this code also for the extended locale handling where the function gets as an additional argument the locale which has to be used. To access the values we have to redefine the _NL_CURRENT macro. */ # define strftime __strftime_l # define wcsftime __wcsftime_l # undef _NL_CURRENT # define _NL_CURRENT(category, item) \ (current->values[_NL_ITEM_INDEX (item)].string) # define LOCALE_ARG , loc # define LOCALE_PARAM_PROTO , __locale_t loc # define HELPER_LOCALE_ARG , current #else # define LOCALE_PARAM_PROTO # define LOCALE_ARG # ifdef _LIBC # define HELPER_LOCALE_ARG , _NL_CURRENT_DATA (LC_TIME) # else # define HELPER_LOCALE_ARG # endif #endif #ifdef COMPILE_WIDE # ifdef USE_IN_EXTENDED_LOCALE_MODEL # define TOUPPER(Ch, L) __towupper_l (Ch, L) # define TOLOWER(Ch, L) __towlower_l (Ch, L) # else # define TOUPPER(Ch, L) towupper (Ch) # define TOLOWER(Ch, L) towlower (Ch) # endif #else # ifdef USE_IN_EXTENDED_LOCALE_MODEL # define TOUPPER(Ch, L) __toupper_l (Ch, L) # define TOLOWER(Ch, L) __tolower_l (Ch, L) # else # define TOUPPER(Ch, L) toupper (Ch) # define TOLOWER(Ch, L) tolower (Ch) # endif #endif /* We don't use 'isdigit' here since the locale dependent interpretation is not what we want here. We only need to accept the arabic digits in the ASCII range. One day there is perhaps a more reliable way to accept other sets of digits. */ #define ISDIGIT(Ch) ((unsigned int) (Ch) - L_('0') <= 9) #if FPRINTFTIME static void fwrite_lowcase (FILE *fp, const CHAR_T *src, size_t len) { while (len-- > 0) { fputc (TOLOWER ((UCHAR_T) *src, loc), fp); ++src; } } static void fwrite_uppcase (FILE *fp, const CHAR_T *src, size_t len) { while (len-- > 0) { fputc (TOUPPER ((UCHAR_T) *src, loc), fp); ++src; } } #else static CHAR_T * memcpy_lowcase (CHAR_T *dest, const CHAR_T *src, size_t len LOCALE_PARAM_PROTO) { while (len-- > 0) dest[len] = TOLOWER ((UCHAR_T) src[len], loc); return dest; } static CHAR_T * memcpy_uppcase (CHAR_T *dest, const CHAR_T *src, size_t len LOCALE_PARAM_PROTO) { while (len-- > 0) dest[len] = TOUPPER ((UCHAR_T) src[len], loc); return dest; } #endif #if ! HAVE_TM_GMTOFF /* Yield the difference between *A and *B, measured in seconds, ignoring leap seconds. */ # define tm_diff ftime_tm_diff static int tm_diff (const struct tm *a, const struct tm *b) { /* Compute intervening leap days correctly even if year is negative. Take care to avoid int overflow in leap day calculations, but it's OK to assume that A and B are close to each other. */ int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3); int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3); int a100 = a4 / 25 - (a4 % 25 < 0); int b100 = b4 / 25 - (b4 % 25 < 0); int a400 = SHR (a100, 2); int b400 = SHR (b100, 2); int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); int years = a->tm_year - b->tm_year; int days = (365 * years + intervening_leap_days + (a->tm_yday - b->tm_yday)); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } #endif /* ! HAVE_TM_GMTOFF */ /* The number of days from the first day of the first ISO week of this year to the year day YDAY with week day WDAY. ISO weeks start on Monday; the first ISO week has the year's first Thursday. YDAY may be as small as YDAY_MINIMUM. */ #define ISO_WEEK_START_WDAY 1 /* Monday */ #define ISO_WEEK1_WDAY 4 /* Thursday */ #define YDAY_MINIMUM (-366) #ifdef __GNUC__ __inline__ #endif static int iso_week_days (int yday, int wday) { /* Add enough to the first operand of % to make it nonnegative. */ int big_enough_multiple_of_7 = (-YDAY_MINIMUM / 7 + 2) * 7; return (yday - (yday - wday + ISO_WEEK1_WDAY + big_enough_multiple_of_7) % 7 + ISO_WEEK1_WDAY - ISO_WEEK_START_WDAY); } /* When compiling this file, GNU applications can #define my_strftime to a symbol (typically nstrftime) to get an extended strftime with extra arguments UT and NS. Emacs is a special case for now, but this Emacs-specific code can be removed once Emacs's config.h defines my_strftime. */ #if defined emacs && !defined my_strftime # define my_strftime nstrftime #endif #if FPRINTFTIME # undef my_strftime # define my_strftime fprintftime #endif #ifdef my_strftime # define extra_args , ut, ns # define extra_args_spec , int ut, int ns #else # if defined COMPILE_WIDE # define my_strftime wcsftime # define nl_get_alt_digit _nl_get_walt_digit # else # define my_strftime strftime # define nl_get_alt_digit _nl_get_alt_digit # endif # define extra_args # define extra_args_spec /* We don't have this information in general. */ # define ut 0 # define ns 0 #endif /* Just like my_strftime, below, but with one more parameter, UPCASE, to indicate that the result should be converted to upper case. */ static size_t strftime_case_ (bool upcase, STREAM_OR_CHAR_T *s, STRFTIME_ARG (size_t maxsize) const CHAR_T *format, const struct tm *tp extra_args_spec LOCALE_PARAM_PROTO) { #if defined _LIBC && defined USE_IN_EXTENDED_LOCALE_MODEL struct locale_data *const current = loc->__locales[LC_TIME]; #endif #if FPRINTFTIME size_t maxsize = (size_t) -1; #endif int hour12 = tp->tm_hour; #ifdef _NL_CURRENT /* We cannot make the following values variables since we must delay the evaluation of these values until really needed since some expressions might not be valid in every situation. The 'struct tm' might be generated by a strptime() call that initialized only a few elements. Dereference the pointers only if the format requires this. Then it is ok to fail if the pointers are invalid. */ # define a_wkday \ ((const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(ABDAY_1) + tp->tm_wday)) # define f_wkday \ ((const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(DAY_1) + tp->tm_wday)) # define a_month \ ((const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(ABMON_1) + tp->tm_mon)) # define f_month \ ((const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(MON_1) + tp->tm_mon)) # define ampm \ ((const CHAR_T *) _NL_CURRENT (LC_TIME, tp->tm_hour > 11 \ ? NLW(PM_STR) : NLW(AM_STR))) # define aw_len STRLEN (a_wkday) # define am_len STRLEN (a_month) # define ap_len STRLEN (ampm) #endif const char *zone; size_t i = 0; STREAM_OR_CHAR_T *p = s; const CHAR_T *f; #if DO_MULTIBYTE && !defined COMPILE_WIDE const char *format_end = NULL; #endif #if ! defined _LIBC && ! HAVE_RUN_TZSET_TEST /* Solaris 2.5.x and 2.6 tzset sometimes modify the storage returned by localtime. On such systems, we must either use the tzset and localtime wrappers to work around the bug (which sets HAVE_RUN_TZSET_TEST) or make a copy of the structure. */ struct tm copy = *tp; tp = © #endif zone = NULL; #if HAVE_TM_ZONE /* The POSIX test suite assumes that setting the environment variable TZ to a new value before calling strftime() will influence the result (the %Z format) even if the information in TP is computed with a totally different time zone. This is bogus: though POSIX allows bad behavior like this, POSIX does not require it. Do the right thing instead. */ zone = (const char *) tp->tm_zone; #endif #if HAVE_TZNAME if (ut) { if (! (zone && *zone)) zone = "GMT"; } else { /* POSIX.1 requires that local time zone information be used as though strftime called tzset. */ # if HAVE_TZSET tzset (); # endif } #endif if (hour12 > 12) hour12 -= 12; else if (hour12 == 0) hour12 = 12; for (f = format; *f != '\0'; ++f) { int pad = 0; /* Padding for number ('-', '_', or 0). */ int modifier; /* Field modifier ('E', 'O', or 0). */ int digits = 0; /* Max digits for numeric format. */ int number_value; /* Numeric value to be printed. */ unsigned int u_number_value; /* (unsigned int) number_value. */ bool negative_number; /* The number is negative. */ bool always_output_a_sign; /* +/- should always be output. */ int tz_colon_mask; /* Bitmask of where ':' should appear. */ const CHAR_T *subfmt; CHAR_T sign_char; CHAR_T *bufp; CHAR_T buf[1 + 2 /* for the two colons in a %::z or %:::z time zone */ + (sizeof (int) < sizeof (time_t) ? INT_STRLEN_BOUND (time_t) : INT_STRLEN_BOUND (int))]; int width = -1; bool to_lowcase = false; bool to_uppcase = upcase; size_t colons; bool change_case = false; int format_char; #if DO_MULTIBYTE && !defined COMPILE_WIDE switch (*f) { case L_('%'): break; case L_('\b'): case L_('\t'): case L_('\n'): case L_('\v'): case L_('\f'): case L_('\r'): case L_(' '): case L_('!'): case L_('"'): case L_('#'): case L_('&'): case L_('\''): case L_('('): case L_(')'): case L_('*'): case L_('+'): case L_(','): case L_('-'): case L_('.'): case L_('/'): case L_('0'): case L_('1'): case L_('2'): case L_('3'): case L_('4'): case L_('5'): case L_('6'): case L_('7'): case L_('8'): case L_('9'): case L_(':'): case L_(';'): case L_('<'): case L_('='): case L_('>'): case L_('?'): case L_('A'): case L_('B'): case L_('C'): case L_('D'): case L_('E'): case L_('F'): case L_('G'): case L_('H'): case L_('I'): case L_('J'): case L_('K'): case L_('L'): case L_('M'): case L_('N'): case L_('O'): case L_('P'): case L_('Q'): case L_('R'): case L_('S'): case L_('T'): case L_('U'): case L_('V'): case L_('W'): case L_('X'): case L_('Y'): case L_('Z'): case L_('['): case L_('\\'): case L_(']'): case L_('^'): case L_('_'): case L_('a'): case L_('b'): case L_('c'): case L_('d'): case L_('e'): case L_('f'): case L_('g'): case L_('h'): case L_('i'): case L_('j'): case L_('k'): case L_('l'): case L_('m'): case L_('n'): case L_('o'): case L_('p'): case L_('q'): case L_('r'): case L_('s'): case L_('t'): case L_('u'): case L_('v'): case L_('w'): case L_('x'): case L_('y'): case L_('z'): case L_('{'): case L_('|'): case L_('}'): case L_('~'): /* The C Standard requires these 98 characters (plus '%') to be in the basic execution character set. None of these characters can start a multibyte sequence, so they need not be analyzed further. */ add1 (*f); continue; default: /* Copy this multibyte sequence until we reach its end, find an error, or come back to the initial shift state. */ { mbstate_t mbstate = mbstate_zero; size_t len = 0; size_t fsize; if (! format_end) format_end = f + strlen (f) + 1; fsize = format_end - f; do { size_t bytes = mbrlen (f + len, fsize - len, &mbstate); if (bytes == 0) break; if (bytes == (size_t) -2) { len += strlen (f + len); break; } if (bytes == (size_t) -1) { len++; break; } len += bytes; } while (! mbsinit (&mbstate)); cpy (len, f); f += len - 1; continue; } } #else /* ! DO_MULTIBYTE */ /* Either multibyte encodings are not supported, they are safe for formats, so any non-'%' byte can be copied through, or this is the wide character version. */ if (*f != L_('%')) { add1 (*f); continue; } #endif /* ! DO_MULTIBYTE */ /* Check for flags that can modify a format. */ while (1) { switch (*++f) { /* This influences the number formats. */ case L_('_'): case L_('-'): case L_('0'): pad = *f; continue; /* This changes textual output. */ case L_('^'): to_uppcase = true; continue; case L_('#'): change_case = true; continue; default: break; } break; } /* As a GNU extension we allow to specify the field width. */ if (ISDIGIT (*f)) { width = 0; do { if (width > INT_MAX / 10 || (width == INT_MAX / 10 && *f - L_('0') > INT_MAX % 10)) /* Avoid overflow. */ width = INT_MAX; else { width *= 10; width += *f - L_('0'); } ++f; } while (ISDIGIT (*f)); } /* Check for modifiers. */ switch (*f) { case L_('E'): case L_('O'): modifier = *f++; break; default: modifier = 0; break; } /* Now do the specified format. */ format_char = *f; switch (format_char) { #define DO_NUMBER(d, v) \ digits = d; \ number_value = v; goto do_number #define DO_SIGNED_NUMBER(d, negative, v) \ digits = d; \ negative_number = negative; \ u_number_value = v; goto do_signed_number /* The mask is not what you might think. When the ordinal i'th bit is set, insert a colon before the i'th digit of the time zone representation. */ #define DO_TZ_OFFSET(d, negative, mask, v) \ digits = d; \ negative_number = negative; \ tz_colon_mask = mask; \ u_number_value = v; goto do_tz_offset #define DO_NUMBER_SPACEPAD(d, v) \ digits = d; \ number_value = v; goto do_number_spacepad case L_('%'): if (modifier != 0) goto bad_format; add1 (*f); break; case L_('a'): if (modifier != 0) goto bad_format; if (change_case) { to_uppcase = true; to_lowcase = false; } #ifdef _NL_CURRENT cpy (aw_len, a_wkday); break; #else goto underlying_strftime; #endif case 'A': if (modifier != 0) goto bad_format; if (change_case) { to_uppcase = true; to_lowcase = false; } #ifdef _NL_CURRENT cpy (STRLEN (f_wkday), f_wkday); break; #else goto underlying_strftime; #endif case L_('b'): case L_('h'): if (change_case) { to_uppcase = true; to_lowcase = false; } if (modifier != 0) goto bad_format; #ifdef _NL_CURRENT cpy (am_len, a_month); break; #else goto underlying_strftime; #endif case L_('B'): if (modifier != 0) goto bad_format; if (change_case) { to_uppcase = true; to_lowcase = false; } #ifdef _NL_CURRENT cpy (STRLEN (f_month), f_month); break; #else goto underlying_strftime; #endif case L_('c'): if (modifier == L_('O')) goto bad_format; #ifdef _NL_CURRENT if (! (modifier == 'E' && (*(subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(ERA_D_T_FMT))) != '\0'))) subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(D_T_FMT)); #else goto underlying_strftime; #endif subformat: { size_t len = strftime_case_ (to_uppcase, NULL, STRFTIME_ARG ((size_t) -1) subfmt, tp extra_args LOCALE_ARG); add (len, strftime_case_ (to_uppcase, p, STRFTIME_ARG (maxsize - i) subfmt, tp extra_args LOCALE_ARG)); } break; #if !(defined _NL_CURRENT && HAVE_STRUCT_ERA_ENTRY) underlying_strftime: { /* The relevant information is available only via the underlying strftime implementation, so use that. */ char ufmt[5]; char *u = ufmt; char ubuf[1024]; /* enough for any single format in practice */ size_t len; /* Make sure we're calling the actual underlying strftime. In some cases, config.h contains something like "#define strftime rpl_strftime". */ # ifdef strftime # undef strftime size_t strftime (); # endif /* The space helps distinguish strftime failure from empty output. */ *u++ = ' '; *u++ = '%'; if (modifier != 0) *u++ = modifier; *u++ = format_char; *u = '\0'; len = strftime (ubuf, sizeof ubuf, ufmt, tp); if (len != 0) cpy (len - 1, ubuf + 1); } break; #endif case L_('C'): if (modifier == L_('O')) goto bad_format; if (modifier == L_('E')) { #if HAVE_STRUCT_ERA_ENTRY struct era_entry *era = _nl_get_era_entry (tp HELPER_LOCALE_ARG); if (era) { # ifdef COMPILE_WIDE size_t len = __wcslen (era->era_wname); cpy (len, era->era_wname); # else size_t len = strlen (era->era_name); cpy (len, era->era_name); # endif break; } #else goto underlying_strftime; #endif } { int century = tp->tm_year / 100 + TM_YEAR_BASE / 100; century -= tp->tm_year % 100 < 0 && 0 < century; DO_SIGNED_NUMBER (2, tp->tm_year < - TM_YEAR_BASE, century); } case L_('x'): if (modifier == L_('O')) goto bad_format; #ifdef _NL_CURRENT if (! (modifier == L_('E') && (*(subfmt = (const CHAR_T *)_NL_CURRENT (LC_TIME, NLW(ERA_D_FMT))) != L_('\0')))) subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(D_FMT)); goto subformat; #else goto underlying_strftime; #endif case L_('D'): if (modifier != 0) goto bad_format; subfmt = L_("%m/%d/%y"); goto subformat; case L_('d'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, tp->tm_mday); case L_('e'): if (modifier == L_('E')) goto bad_format; DO_NUMBER_SPACEPAD (2, tp->tm_mday); /* All numeric formats set DIGITS and NUMBER_VALUE (or U_NUMBER_VALUE) and then jump to one of these labels. */ do_tz_offset: always_output_a_sign = true; goto do_number_body; do_number_spacepad: /* Force '_' flag unless overridden by '0' or '-' flag. */ if (pad != L_('0') && pad != L_('-')) pad = L_('_'); do_number: /* Format NUMBER_VALUE according to the MODIFIER flag. */ negative_number = number_value < 0; u_number_value = number_value; do_signed_number: always_output_a_sign = false; tz_colon_mask = 0; do_number_body: /* Format U_NUMBER_VALUE according to the MODIFIER flag. NEGATIVE_NUMBER is nonzero if the original number was negative; in this case it was converted directly to unsigned int (i.e., modulo (UINT_MAX + 1)) without negating it. */ if (modifier == L_('O') && !negative_number) { #ifdef _NL_CURRENT /* Get the locale specific alternate representation of the number. If none exist NULL is returned. */ const CHAR_T *cp = nl_get_alt_digit (u_number_value HELPER_LOCALE_ARG); if (cp != NULL) { size_t digitlen = STRLEN (cp); if (digitlen != 0) { cpy (digitlen, cp); break; } } #else goto underlying_strftime; #endif } bufp = buf + sizeof (buf) / sizeof (buf[0]); if (negative_number) u_number_value = - u_number_value; do { if (tz_colon_mask & 1) *--bufp = ':'; tz_colon_mask >>= 1; *--bufp = u_number_value % 10 + L_('0'); u_number_value /= 10; } while (u_number_value != 0 || tz_colon_mask != 0); do_number_sign_and_padding: if (digits < width) digits = width; sign_char = (negative_number ? L_('-') : always_output_a_sign ? L_('+') : 0); if (pad == L_('-')) { if (sign_char) add1 (sign_char); } else { int padding = digits - (buf + (sizeof (buf) / sizeof (buf[0])) - bufp) - !!sign_char; if (padding > 0) { if (pad == L_('_')) { if ((size_t) padding >= maxsize - i) return 0; if (p) memset_space (p, padding); i += padding; width = width > padding ? width - padding : 0; if (sign_char) add1 (sign_char); } else { if ((size_t) digits >= maxsize - i) return 0; if (sign_char) add1 (sign_char); if (p) memset_zero (p, padding); i += padding; width = 0; } } else { if (sign_char) add1 (sign_char); } } cpy (buf + sizeof (buf) / sizeof (buf[0]) - bufp, bufp); break; case L_('F'): if (modifier != 0) goto bad_format; subfmt = L_("%Y-%m-%d"); goto subformat; case L_('H'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, tp->tm_hour); case L_('I'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, hour12); case L_('k'): /* GNU extension. */ if (modifier == L_('E')) goto bad_format; DO_NUMBER_SPACEPAD (2, tp->tm_hour); case L_('l'): /* GNU extension. */ if (modifier == L_('E')) goto bad_format; DO_NUMBER_SPACEPAD (2, hour12); case L_('j'): if (modifier == L_('E')) goto bad_format; DO_SIGNED_NUMBER (3, tp->tm_yday < -1, tp->tm_yday + 1U); case L_('M'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, tp->tm_min); case L_('m'): if (modifier == L_('E')) goto bad_format; DO_SIGNED_NUMBER (2, tp->tm_mon < -1, tp->tm_mon + 1U); #ifndef _LIBC case L_('N'): /* GNU extension. */ if (modifier == L_('E')) goto bad_format; number_value = ns; if (width == -1) width = 9; else { /* Take an explicit width less than 9 as a precision. */ int j; for (j = width; j < 9; j++) number_value /= 10; } DO_NUMBER (width, number_value); #endif case L_('n'): add1 (L_('\n')); break; case L_('P'): to_lowcase = true; #ifndef _NL_CURRENT format_char = L_('p'); #endif /* FALLTHROUGH */ case L_('p'): if (change_case) { to_uppcase = false; to_lowcase = true; } #ifdef _NL_CURRENT cpy (ap_len, ampm); break; #else goto underlying_strftime; #endif case L_('R'): subfmt = L_("%H:%M"); goto subformat; case L_('r'): #ifdef _NL_CURRENT if (*(subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(T_FMT_AMPM))) == L_('\0')) subfmt = L_("%I:%M:%S %p"); goto subformat; #else goto underlying_strftime; #endif case L_('S'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, tp->tm_sec); case L_('s'): /* GNU extension. */ { struct tm ltm; time_t t; ltm = *tp; t = mktime (<m); /* Generate string value for T using time_t arithmetic; this works even if sizeof (long) < sizeof (time_t). */ bufp = buf + sizeof (buf) / sizeof (buf[0]); negative_number = t < 0; do { int d = t % 10; t /= 10; *--bufp = (negative_number ? -d : d) + L_('0'); } while (t != 0); digits = 1; always_output_a_sign = false; goto do_number_sign_and_padding; } case L_('X'): if (modifier == L_('O')) goto bad_format; #ifdef _NL_CURRENT if (! (modifier == L_('E') && (*(subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(ERA_T_FMT))) != L_('\0')))) subfmt = (const CHAR_T *) _NL_CURRENT (LC_TIME, NLW(T_FMT)); goto subformat; #else goto underlying_strftime; #endif case L_('T'): subfmt = L_("%H:%M:%S"); goto subformat; case L_('t'): add1 (L_('\t')); break; case L_('u'): DO_NUMBER (1, (tp->tm_wday - 1 + 7) % 7 + 1); case L_('U'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, (tp->tm_yday - tp->tm_wday + 7) / 7); case L_('V'): case L_('g'): case L_('G'): if (modifier == L_('E')) goto bad_format; { /* YEAR is a leap year if and only if (tp->tm_year + TM_YEAR_BASE) is a leap year, except that YEAR and YEAR - 1 both work correctly even when (tp->tm_year + TM_YEAR_BASE) would overflow. */ int year = (tp->tm_year + (tp->tm_year < 0 ? TM_YEAR_BASE % 400 : TM_YEAR_BASE % 400 - 400)); int year_adjust = 0; int days = iso_week_days (tp->tm_yday, tp->tm_wday); if (days < 0) { /* This ISO week belongs to the previous year. */ year_adjust = -1; days = iso_week_days (tp->tm_yday + (365 + __isleap (year - 1)), tp->tm_wday); } else { int d = iso_week_days (tp->tm_yday - (365 + __isleap (year)), tp->tm_wday); if (0 <= d) { /* This ISO week belongs to the next year. */ year_adjust = 1; days = d; } } switch (*f) { case L_('g'): { int yy = (tp->tm_year % 100 + year_adjust) % 100; DO_NUMBER (2, (0 <= yy ? yy : tp->tm_year < -TM_YEAR_BASE - year_adjust ? -yy : yy + 100)); } case L_('G'): DO_SIGNED_NUMBER (4, tp->tm_year < -TM_YEAR_BASE - year_adjust, (tp->tm_year + (unsigned int) TM_YEAR_BASE + year_adjust)); default: DO_NUMBER (2, days / 7 + 1); } } case L_('W'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (2, (tp->tm_yday - (tp->tm_wday - 1 + 7) % 7 + 7) / 7); case L_('w'): if (modifier == L_('E')) goto bad_format; DO_NUMBER (1, tp->tm_wday); case L_('Y'): if (modifier == 'E') { #if HAVE_STRUCT_ERA_ENTRY struct era_entry *era = _nl_get_era_entry (tp HELPER_LOCALE_ARG); if (era) { # ifdef COMPILE_WIDE subfmt = era->era_wformat; # else subfmt = era->era_format; # endif goto subformat; } #else goto underlying_strftime; #endif } if (modifier == L_('O')) goto bad_format; else DO_SIGNED_NUMBER (4, tp->tm_year < -TM_YEAR_BASE, tp->tm_year + (unsigned int) TM_YEAR_BASE); case L_('y'): if (modifier == L_('E')) { #if HAVE_STRUCT_ERA_ENTRY struct era_entry *era = _nl_get_era_entry (tp HELPER_LOCALE_ARG); if (era) { int delta = tp->tm_year - era->start_date[0]; DO_NUMBER (1, (era->offset + delta * era->absolute_direction)); } #else goto underlying_strftime; #endif } { int yy = tp->tm_year % 100; if (yy < 0) yy = tp->tm_year < - TM_YEAR_BASE ? -yy : yy + 100; DO_NUMBER (2, yy); } case L_('Z'): if (change_case) { to_uppcase = false; to_lowcase = true; } #if HAVE_TZNAME /* The tzset() call might have changed the value. */ if (!(zone && *zone) && tp->tm_isdst >= 0) zone = tzname[tp->tm_isdst != 0]; #endif if (! zone) zone = ""; #ifdef COMPILE_WIDE { /* The zone string is always given in multibyte form. We have to transform it first. */ wchar_t *wczone; size_t len; widen (zone, wczone, len); cpy (len, wczone); } #else cpy (strlen (zone), zone); #endif break; case L_(':'): /* :, ::, and ::: are valid only just before 'z'. :::: etc. are rejected later. */ for (colons = 1; f[colons] == L_(':'); colons++) continue; if (f[colons] != L_('z')) goto bad_format; f += colons; goto do_z_conversion; case L_('z'): colons = 0; do_z_conversion: if (tp->tm_isdst < 0) break; { int diff; int hour_diff; int min_diff; int sec_diff; #if HAVE_TM_GMTOFF diff = tp->tm_gmtoff; #else if (ut) diff = 0; else { struct tm gtm; struct tm ltm; time_t lt; ltm = *tp; lt = mktime (<m); if (lt == (time_t) -1) { /* mktime returns -1 for errors, but -1 is also a valid time_t value. Check whether an error really occurred. */ struct tm tm; if (! __localtime_r (<, &tm) || ((ltm.tm_sec ^ tm.tm_sec) | (ltm.tm_min ^ tm.tm_min) | (ltm.tm_hour ^ tm.tm_hour) | (ltm.tm_mday ^ tm.tm_mday) | (ltm.tm_mon ^ tm.tm_mon) | (ltm.tm_year ^ tm.tm_year))) break; } if (! __gmtime_r (<, >m)) break; diff = tm_diff (<m, >m); } #endif hour_diff = diff / 60 / 60; min_diff = diff / 60 % 60; sec_diff = diff % 60; switch (colons) { case 0: /* +hhmm */ DO_TZ_OFFSET (5, diff < 0, 0, hour_diff * 100 + min_diff); case 1: tz_hh_mm: /* +hh:mm */ DO_TZ_OFFSET (6, diff < 0, 04, hour_diff * 100 + min_diff); case 2: tz_hh_mm_ss: /* +hh:mm:ss */ DO_TZ_OFFSET (9, diff < 0, 024, hour_diff * 10000 + min_diff * 100 + sec_diff); case 3: /* +hh if possible, else +hh:mm, else +hh:mm:ss */ if (sec_diff != 0) goto tz_hh_mm_ss; if (min_diff != 0) goto tz_hh_mm; DO_TZ_OFFSET (3, diff < 0, 0, hour_diff); default: goto bad_format; } } case L_('\0'): /* GNU extension: % at end of format. */ --f; /* Fall through. */ default: /* Unknown format; output the format, including the '%', since this is most likely the right thing to do if a multibyte string has been misparsed. */ bad_format: { int flen; for (flen = 1; f[1 - flen] != L_('%'); flen++) continue; cpy (flen, &f[1 - flen]); } break; } } #if ! FPRINTFTIME if (p && maxsize != 0) *p = L_('\0'); #endif return i; } /* Write information from TP into S according to the format string FORMAT, writing no more that MAXSIZE characters (including the terminating '\0') and returning number of characters written. If S is NULL, nothing will be written anywhere, so to determine how many characters would be written, use NULL for S and (size_t) -1 for MAXSIZE. */ size_t my_strftime (STREAM_OR_CHAR_T *s, STRFTIME_ARG (size_t maxsize) const CHAR_T *format, const struct tm *tp extra_args_spec LOCALE_PARAM_PROTO) { return strftime_case_ (false, s, STRFTIME_ARG (maxsize) format, tp extra_args LOCALE_ARG); } #if defined _LIBC && ! FPRINTFTIME libc_hidden_def (my_strftime) #endif #if defined emacs && ! FPRINTFTIME /* For Emacs we have a separate interface which corresponds to the normal strftime function plus the ut argument, but without the ns argument. */ size_t emacs_strftimeu (char *s, size_t maxsize, const char *format, const struct tm *tp, int ut) { return my_strftime (s, maxsize, format, tp, ut, 0); } #endif