/* * Routines having to do with the 'struct sk_buff' memory handlers. * * Authors: Alan Cox * Florian La Roche * * Version: $Id: skbuff.c,v 1.55 1999/02/23 08:12:27 davem Exp $ * * Fixes: * Alan Cox : Fixed the worst of the load balancer bugs. * Dave Platt : Interrupt stacking fix. * Richard Kooijman : Timestamp fixes. * Alan Cox : Changed buffer format. * Alan Cox : destructor hook for AF_UNIX etc. * Linus Torvalds : Better skb_clone. * Alan Cox : Added skb_copy. * Alan Cox : Added all the changed routines Linus * only put in the headers * Ray VanTassle : Fixed --skb->lock in free * Alan Cox : skb_copy copy arp field * Andi Kleen : slabified it. * * NOTE: * The __skb_ routines should be called with interrupts * disabled, or you better be *real* sure that the operation is atomic * with respect to whatever list is being frobbed (e.g. via lock_sock() * or via disabling bottom half handlers, etc). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * The functions in this file will not compile correctly with gcc 2.4.x */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Skb list spinlock */ spinlock_t skb_queue_lock = SPIN_LOCK_UNLOCKED; /* * Resource tracking variables */ static atomic_t net_skbcount = ATOMIC_INIT(0); static atomic_t net_allocs = ATOMIC_INIT(0); static atomic_t net_fails = ATOMIC_INIT(0); extern atomic_t ip_frag_mem; static kmem_cache_t *skbuff_head_cache; /* * Keep out-of-line to prevent kernel bloat. * __builtin_return_address is not used because it is not always * reliable. */ void skb_over_panic(struct sk_buff *skb, int sz, void *here) { panic("skput:over: %p:%d put:%d dev:%s", here, skb->len, sz, skb->dev ? skb->dev->name : ""); } void skb_under_panic(struct sk_buff *skb, int sz, void *here) { panic("skput:under: %p:%d put:%d dev:%s", here, skb->len, sz, skb->dev ? skb->dev->name : ""); } void show_net_buffers(void) { printk("Networking buffers in use : %u\n", atomic_read(&net_skbcount)); printk("Total network buffer allocations : %u\n", atomic_read(&net_allocs)); printk("Total failed network buffer allocs : %u\n", atomic_read(&net_fails)); #ifdef CONFIG_INET printk("IP fragment buffer size : %u\n", atomic_read(&ip_frag_mem)); #endif } /* Allocate a new skbuff. We do this ourselves so we can fill in a few * 'private' fields and also do memory statistics to find all the * [BEEP] leaks. * */ struct sk_buff *alloc_skb(unsigned int size,int gfp_mask) { struct sk_buff *skb; u8 *data; if (in_interrupt() && (gfp_mask & __GFP_WAIT)) { static int count = 0; if (++count < 5) { printk(KERN_ERR "alloc_skb called nonatomically " "from interrupt %p\n", __builtin_return_address(0)); } gfp_mask &= ~__GFP_WAIT; } /* Get the HEAD */ skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask); if (skb == NULL) goto nohead; /* Get the DATA. Size must match skb_add_mtu(). */ size = ((size + 15) & ~15); data = kmalloc(size + sizeof(atomic_t), gfp_mask); if (data == NULL) goto nodata; /* Note that this counter is useless now - you can just look in the * skbuff_head entry in /proc/slabinfo. We keep it only for emergency * cases. */ atomic_inc(&net_allocs); skb->truesize = size; atomic_inc(&net_skbcount); /* Load the data pointers. */ skb->head = data; skb->data = data; skb->tail = data; skb->end = data + size; /* Set up other state */ skb->len = 0; skb->is_clone = 0; skb->cloned = 0; atomic_set(&skb->users, 1); atomic_set(skb_datarefp(skb), 1); return skb; nodata: kmem_cache_free(skbuff_head_cache, skb); nohead: atomic_inc(&net_fails); return NULL; } /* * Slab constructor for a skb head. */ static inline void skb_headerinit(void *p, kmem_cache_t *cache, unsigned long flags) { struct sk_buff *skb = p; skb->destructor = NULL; skb->pkt_type = PACKET_HOST; /* Default type */ skb->pkt_bridged = 0; /* Not bridged */ skb->prev = skb->next = NULL; skb->list = NULL; skb->sk = NULL; skb->stamp.tv_sec=0; /* No idea about time */ skb->ip_summed = 0; skb->security = 0; /* By default packets are insecure */ skb->dst = NULL; #ifdef CONFIG_IP_FIREWALL skb->fwmark = 0; #endif memset(skb->cb, 0, sizeof(skb->cb)); skb->priority = 0; } /* * Free an skbuff by memory without cleaning the state. */ void kfree_skbmem(struct sk_buff *skb) { if (!skb->cloned || atomic_dec_and_test(skb_datarefp(skb))) kfree(skb->head); kmem_cache_free(skbuff_head_cache, skb); atomic_dec(&net_skbcount); } /* * Free an sk_buff. Release anything attached to the buffer. Clean the state. */ void __kfree_skb(struct sk_buff *skb) { if (skb->list) printk(KERN_WARNING "Warning: kfree_skb passed an skb still " "on a list (from %p).\n", __builtin_return_address(0)); dst_release(skb->dst); if(skb->destructor) skb->destructor(skb); skb_headerinit(skb, NULL, 0); /* clean state */ kfree_skbmem(skb); } /* * Duplicate an sk_buff. The new one is not owned by a socket. */ struct sk_buff *skb_clone(struct sk_buff *skb, int gfp_mask) { struct sk_buff *n; n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); if (!n) return NULL; memcpy(n, skb, sizeof(*n)); atomic_inc(skb_datarefp(skb)); skb->cloned = 1; atomic_inc(&net_allocs); atomic_inc(&net_skbcount); dst_clone(n->dst); n->cloned = 1; n->next = n->prev = NULL; n->list = NULL; n->sk = NULL; n->is_clone = 1; atomic_set(&n->users, 1); n->destructor = NULL; return n; } /* * This is slower, and copies the whole data area */ struct sk_buff *skb_copy(struct sk_buff *skb, int gfp_mask) { struct sk_buff *n; unsigned long offset; /* * Allocate the copy buffer */ n=alloc_skb(skb->end - skb->head, gfp_mask); if(n==NULL) return NULL; /* * Shift between the two data areas in bytes */ offset=n->head-skb->head; /* Set the data pointer */ skb_reserve(n,skb->data-skb->head); /* Set the tail pointer and length */ skb_put(n,skb->len); /* Copy the bytes */ memcpy(n->head,skb->head,skb->end-skb->head); n->csum = skb->csum; n->list=NULL; n->sk=NULL; n->dev=skb->dev; n->priority=skb->priority; n->protocol=skb->protocol; n->dst=dst_clone(skb->dst); n->h.raw=skb->h.raw+offset; n->nh.raw=skb->nh.raw+offset; n->mac.raw=skb->mac.raw+offset; memcpy(n->cb, skb->cb, sizeof(skb->cb)); n->used=skb->used; n->is_clone=0; atomic_set(&n->users, 1); n->pkt_type=skb->pkt_type; n->stamp=skb->stamp; n->destructor = NULL; n->security=skb->security; #ifdef CONFIG_IP_FIREWALL n->fwmark = skb->fwmark; #endif return n; } struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, int newheadroom) { struct sk_buff *n; unsigned long offset; int headroom = skb_headroom(skb); /* * Allocate the copy buffer */ n=alloc_skb(skb->truesize+newheadroom-headroom, GFP_ATOMIC); if(n==NULL) return NULL; skb_reserve(n,newheadroom); /* * Shift between the two data areas in bytes */ offset=n->data-skb->data; /* Set the tail pointer and length */ skb_put(n,skb->len); /* Copy the bytes */ memcpy(n->data,skb->data,skb->len); n->list=NULL; n->sk=NULL; n->priority=skb->priority; n->protocol=skb->protocol; n->dev=skb->dev; n->dst=dst_clone(skb->dst); n->h.raw=skb->h.raw+offset; n->nh.raw=skb->nh.raw+offset; n->mac.raw=skb->mac.raw+offset; memcpy(n->cb, skb->cb, sizeof(skb->cb)); n->used=skb->used; n->is_clone=0; atomic_set(&n->users, 1); n->pkt_type=skb->pkt_type; n->stamp=skb->stamp; n->destructor = NULL; n->security=skb->security; #ifdef CONFIG_IP_FIREWALL n->fwmark = skb->fwmark; #endif return n; } #if 0 /* * Tune the memory allocator for a new MTU size. */ void skb_add_mtu(int mtu) { /* Must match allocation in alloc_skb */ mtu = ((mtu + 15) & ~15) + sizeof(atomic_t); kmem_add_cache_size(mtu); } #endif void __init skb_init(void) { skbuff_head_cache = kmem_cache_create("skbuff_head_cache", sizeof(struct sk_buff), 0, SLAB_HWCACHE_ALIGN, skb_headerinit, NULL); if (!skbuff_head_cache) panic("cannot create skbuff cache"); }