/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2013 * Free Software Foundation, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 3 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301 USA */ #ifdef HAVE_CONFIG_H # include #endif #include #include #include "libguile/__scm.h" #include "libguile/_scm.h" #include "libguile/alist.h" #include "libguile/async.h" #include "libguile/continuations.h" #include "libguile/control.h" #include "libguile/debug.h" #include "libguile/deprecation.h" #include "libguile/dynwind.h" #include "libguile/eq.h" #include "libguile/expand.h" #include "libguile/feature.h" #include "libguile/fluids.h" #include "libguile/goops.h" #include "libguile/hash.h" #include "libguile/hashtab.h" #include "libguile/list.h" #include "libguile/macros.h" #include "libguile/memoize.h" #include "libguile/modules.h" #include "libguile/ports.h" #include "libguile/print.h" #include "libguile/procprop.h" #include "libguile/programs.h" #include "libguile/root.h" #include "libguile/smob.h" #include "libguile/srcprop.h" #include "libguile/stackchk.h" #include "libguile/strings.h" #include "libguile/threads.h" #include "libguile/throw.h" #include "libguile/validate.h" #include "libguile/values.h" #include "libguile/vectors.h" #include "libguile/vm.h" #include "libguile/eval.h" #include "libguile/private-options.h" /* We have three levels of EVAL here: - eval (exp, env) evaluates EXP in environment ENV. ENV is a lexical environment structure as used by the actual tree code evaluator. When ENV is a top-level environment, then changes to the current module are tracked by updating ENV so that it continues to be in sync with the current module. - scm_primitive_eval (exp) evaluates EXP in the top-level environment as determined by the current module. This is done by constructing a suitable environment and calling eval. Thus, changes to the top-level module are tracked normally. - scm_eval (exp, mod) evaluates EXP while MOD is the current module. This is done by setting the current module to MOD_OR_STATE, invoking scm_primitive_eval on EXP, and then restoring the current module to the value it had previously. That is, while EXP is evaluated, changes to the current module (or dynamic state) are tracked, but these changes do not persist when scm_eval returns. */ /* Boot closures. We only see these when compiling eval.scm, because once eval.scm is in the house, closures are standard VM closures. */ static scm_t_bits scm_tc16_boot_closure; #define RETURN_BOOT_CLOSURE(code, env) \ SCM_RETURN_NEWSMOB2 (scm_tc16_boot_closure, SCM_UNPACK (code), SCM_UNPACK (env)) #define BOOT_CLOSURE_P(obj) SCM_TYP16_PREDICATE (scm_tc16_boot_closure, (obj)) #define BOOT_CLOSURE_CODE(x) SCM_SMOB_OBJECT (x) #define BOOT_CLOSURE_ENV(x) SCM_SMOB_OBJECT_2 (x) #define BOOT_CLOSURE_BODY(x) CAR (BOOT_CLOSURE_CODE (x)) #define BOOT_CLOSURE_NUM_REQUIRED_ARGS(x) (SCM_I_INUM (CADDR (BOOT_CLOSURE_CODE (x)))) #define BOOT_CLOSURE_IS_FIXED(x) (scm_is_null (CDDDR (BOOT_CLOSURE_CODE (x)))) /* NB: One may only call the following accessors if the closure is not FIXED. */ #define BOOT_CLOSURE_HAS_REST_ARGS(x) scm_is_true (CADDR (SCM_CDR (BOOT_CLOSURE_CODE (x)))) #define BOOT_CLOSURE_IS_REST(x) scm_is_null (SCM_CDR (CDDDR (BOOT_CLOSURE_CODE (x)))) /* NB: One may only call the following accessors if the closure is not REST. */ #define BOOT_CLOSURE_IS_FULL(x) (1) #define BOOT_CLOSURE_PARSE_FULL(fu_,body,nargs,rest,nopt,kw,inits,alt) \ do { SCM fu = fu_; \ body = CAR (fu); fu = CDDR (fu); \ \ rest = kw = alt = SCM_BOOL_F; \ inits = SCM_EOL; \ nopt = 0; \ \ nreq = SCM_I_INUM (CAR (fu)); fu = CDR (fu); \ if (scm_is_pair (fu)) \ { \ rest = CAR (fu); fu = CDR (fu); \ if (scm_is_pair (fu)) \ { \ nopt = SCM_I_INUM (CAR (fu)); fu = CDR (fu); \ kw = CAR (fu); fu = CDR (fu); \ inits = CAR (fu); fu = CDR (fu); \ alt = CAR (fu); \ } \ } \ } while (0) static void prepare_boot_closure_env_for_apply (SCM proc, SCM args, SCM *out_body, SCM *out_env); static void prepare_boot_closure_env_for_eval (SCM proc, unsigned int argc, SCM exps, SCM *out_body, SCM *inout_env); #define CAR(x) SCM_CAR(x) #define CDR(x) SCM_CDR(x) #define CAAR(x) SCM_CAAR(x) #define CADR(x) SCM_CADR(x) #define CDAR(x) SCM_CDAR(x) #define CDDR(x) SCM_CDDR(x) #define CADDR(x) SCM_CADDR(x) #define CDDDR(x) SCM_CDDDR(x) SCM_SYMBOL (scm_unbound_variable_key, "unbound-variable"); static void error_used_before_defined (void) { scm_error (scm_unbound_variable_key, NULL, "Variable used before given a value", SCM_EOL, SCM_BOOL_F); } static void error_invalid_keyword (SCM proc, SCM obj) { scm_error_scm (scm_from_latin1_symbol ("keyword-argument-error"), proc, scm_from_locale_string ("Invalid keyword"), SCM_EOL, scm_list_1 (obj)); } static void error_unrecognized_keyword (SCM proc, SCM kw) { scm_error_scm (scm_from_latin1_symbol ("keyword-argument-error"), proc, scm_from_locale_string ("Unrecognized keyword"), SCM_EOL, scm_list_1 (kw)); } /* Multiple values truncation. */ static SCM truncate_values (SCM x) { if (SCM_LIKELY (!SCM_VALUESP (x))) return x; else { SCM l = scm_struct_ref (x, SCM_INUM0); if (SCM_LIKELY (scm_is_pair (l))) return scm_car (l); else { scm_ithrow (scm_from_latin1_symbol ("vm-run"), scm_list_3 (scm_from_latin1_symbol ("vm-run"), scm_from_locale_string ("Too few values returned to continuation"), SCM_EOL), 1); /* Not reached. */ return SCM_BOOL_F; } } } #define EVAL1(x, env) (truncate_values (eval ((x), (env)))) /* the environment: (VAL ... . MOD) If MOD is #f, it means the environment was captured before modules were booted. If MOD is the literal value '(), we are evaluating at the top level, and so should track changes to the current module. You have to be careful in this case, because further lexical contours should capture the current module. */ #define CAPTURE_ENV(env) \ (scm_is_null (env) ? scm_current_module () : \ (scm_is_false (env) ? scm_the_root_module () : env)) static SCM eval (SCM x, SCM env) { SCM mx; SCM proc = SCM_UNDEFINED, args = SCM_EOL; unsigned int argc; loop: SCM_TICK; if (!SCM_MEMOIZED_P (x)) abort (); mx = SCM_MEMOIZED_ARGS (x); switch (SCM_MEMOIZED_TAG (x)) { case SCM_M_BEGIN: for (; !scm_is_null (CDR (mx)); mx = CDR (mx)) eval (CAR (mx), env); x = CAR (mx); goto loop; case SCM_M_IF: if (scm_is_true (EVAL1 (CAR (mx), env))) x = CADR (mx); else x = CDDR (mx); goto loop; case SCM_M_LET: { SCM inits = CAR (mx); SCM new_env = CAPTURE_ENV (env); for (; scm_is_pair (inits); inits = CDR (inits)) new_env = scm_cons (EVAL1 (CAR (inits), env), new_env); env = new_env; x = CDR (mx); goto loop; } case SCM_M_LAMBDA: RETURN_BOOT_CLOSURE (mx, CAPTURE_ENV (env)); case SCM_M_QUOTE: return mx; case SCM_M_DEFINE: scm_define (CAR (mx), EVAL1 (CDR (mx), env)); return SCM_UNSPECIFIED; case SCM_M_DYNWIND: { SCM in, out, res, old_winds; in = EVAL1 (CAR (mx), env); out = EVAL1 (CDDR (mx), env); scm_call_0 (in); old_winds = scm_i_dynwinds (); scm_i_set_dynwinds (scm_acons (in, out, old_winds)); res = eval (CADR (mx), env); scm_i_set_dynwinds (old_winds); scm_call_0 (out); return res; } case SCM_M_WITH_FLUIDS: { long i, len; SCM *fluidv, *valuesv, walk, wf, res; len = scm_ilength (CAR (mx)); fluidv = alloca (sizeof (SCM)*len); for (i = 0, walk = CAR (mx); i < len; i++, walk = CDR (walk)) fluidv[i] = EVAL1 (CAR (walk), env); valuesv = alloca (sizeof (SCM)*len); for (i = 0, walk = CADR (mx); i < len; i++, walk = CDR (walk)) valuesv[i] = EVAL1 (CAR (walk), env); wf = scm_i_make_with_fluids (len, fluidv, valuesv); scm_i_swap_with_fluids (wf, SCM_I_CURRENT_THREAD->dynamic_state); scm_i_set_dynwinds (scm_cons (wf, scm_i_dynwinds ())); res = eval (CDDR (mx), env); scm_i_swap_with_fluids (wf, SCM_I_CURRENT_THREAD->dynamic_state); scm_i_set_dynwinds (CDR (scm_i_dynwinds ())); return res; } case SCM_M_APPLY: /* Evaluate the procedure to be applied. */ proc = EVAL1 (CAR (mx), env); /* Evaluate the argument holding the list of arguments */ args = EVAL1 (CADR (mx), env); apply_proc: /* Go here to tail-apply a procedure. PROC is the procedure and * ARGS is the list of arguments. */ if (BOOT_CLOSURE_P (proc)) { prepare_boot_closure_env_for_apply (proc, args, &x, &env); goto loop; } else return scm_call_with_vm (scm_the_vm (), proc, args); case SCM_M_CALL: /* Evaluate the procedure to be applied. */ proc = EVAL1 (CAR (mx), env); argc = SCM_I_INUM (CADR (mx)); mx = CDDR (mx); if (BOOT_CLOSURE_P (proc)) { prepare_boot_closure_env_for_eval (proc, argc, mx, &x, &env); goto loop; } else { SCM *argv; unsigned int i; argv = alloca (argc * sizeof (SCM)); for (i = 0; i < argc; i++, mx = CDR (mx)) argv[i] = EVAL1 (CAR (mx), env); return scm_c_vm_run (scm_the_vm (), proc, argv, argc); } case SCM_M_CONT: return scm_i_call_with_current_continuation (EVAL1 (mx, env)); case SCM_M_CALL_WITH_VALUES: { SCM producer; SCM v; producer = EVAL1 (CAR (mx), env); /* `proc' is the consumer. */ proc = EVAL1 (CDR (mx), env); v = scm_call_with_vm (scm_the_vm (), producer, SCM_EOL); if (SCM_VALUESP (v)) args = scm_struct_ref (v, SCM_INUM0); else args = scm_list_1 (v); goto apply_proc; } case SCM_M_LEXICAL_REF: { int n; SCM ret; for (n = SCM_I_INUM (mx); n; n--) env = CDR (env); ret = CAR (env); if (SCM_UNLIKELY (SCM_UNBNDP (ret))) /* we don't know what variable, though, because we don't have its name */ error_used_before_defined (); return ret; } case SCM_M_LEXICAL_SET: { int n; SCM val = EVAL1 (CDR (mx), env); for (n = SCM_I_INUM (CAR (mx)); n; n--) env = CDR (env); SCM_SETCAR (env, val); return SCM_UNSPECIFIED; } case SCM_M_TOPLEVEL_REF: if (SCM_VARIABLEP (mx)) return SCM_VARIABLE_REF (mx); else { while (scm_is_pair (env)) env = CDR (env); return SCM_VARIABLE_REF (scm_memoize_variable_access_x (x, CAPTURE_ENV (env))); } case SCM_M_TOPLEVEL_SET: { SCM var = CAR (mx); SCM val = EVAL1 (CDR (mx), env); if (SCM_VARIABLEP (var)) { SCM_VARIABLE_SET (var, val); return SCM_UNSPECIFIED; } else { while (scm_is_pair (env)) env = CDR (env); SCM_VARIABLE_SET (scm_memoize_variable_access_x (x, CAPTURE_ENV (env)), val); return SCM_UNSPECIFIED; } } case SCM_M_MODULE_REF: if (SCM_VARIABLEP (mx)) return SCM_VARIABLE_REF (mx); else return SCM_VARIABLE_REF (scm_memoize_variable_access_x (x, SCM_BOOL_F)); case SCM_M_MODULE_SET: if (SCM_VARIABLEP (CDR (mx))) { SCM_VARIABLE_SET (CDR (mx), EVAL1 (CAR (mx), env)); return SCM_UNSPECIFIED; } else { SCM_VARIABLE_SET (scm_memoize_variable_access_x (x, SCM_BOOL_F), EVAL1 (CAR (mx), env)); return SCM_UNSPECIFIED; } case SCM_M_PROMPT: { SCM vm, res; /* We need the prompt and handler values after a longjmp case, so make sure they are volatile. */ volatile SCM handler, prompt; vm = scm_the_vm (); prompt = scm_c_make_prompt (EVAL1 (CAR (mx), env), SCM_VM_DATA (vm)->fp, SCM_VM_DATA (vm)->sp, SCM_VM_DATA (vm)->ip, 0, -1, scm_i_dynwinds ()); handler = EVAL1 (CDDR (mx), env); scm_i_set_dynwinds (scm_cons (prompt, scm_i_dynwinds ())); if (SCM_PROMPT_SETJMP (prompt)) { /* The prompt exited nonlocally. */ proc = handler; args = scm_i_prompt_pop_abort_args_x (scm_the_vm ()); goto apply_proc; } res = eval (CADR (mx), env); scm_i_set_dynwinds (CDR (scm_i_dynwinds ())); return res; } default: abort (); } } /* Simple procedure calls */ SCM scm_call_0 (SCM proc) { return scm_c_vm_run (scm_the_vm (), proc, NULL, 0); } SCM scm_call_1 (SCM proc, SCM arg1) { return scm_c_vm_run (scm_the_vm (), proc, &arg1, 1); } SCM scm_call_2 (SCM proc, SCM arg1, SCM arg2) { SCM args[] = { arg1, arg2 }; return scm_c_vm_run (scm_the_vm (), proc, args, 2); } SCM scm_call_3 (SCM proc, SCM arg1, SCM arg2, SCM arg3) { SCM args[] = { arg1, arg2, arg3 }; return scm_c_vm_run (scm_the_vm (), proc, args, 3); } SCM scm_call_4 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4) { SCM args[] = { arg1, arg2, arg3, arg4 }; return scm_c_vm_run (scm_the_vm (), proc, args, 4); } SCM scm_call_5 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4, SCM arg5) { SCM args[] = { arg1, arg2, arg3, arg4, arg5 }; return scm_c_vm_run (scm_the_vm (), proc, args, 5); } SCM scm_call_6 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4, SCM arg5, SCM arg6) { SCM args[] = { arg1, arg2, arg3, arg4, arg5, arg6 }; return scm_c_vm_run (scm_the_vm (), proc, args, 6); } SCM scm_call_7 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4, SCM arg5, SCM arg6, SCM arg7) { SCM args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7 }; return scm_c_vm_run (scm_the_vm (), proc, args, 7); } SCM scm_call_8 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4, SCM arg5, SCM arg6, SCM arg7, SCM arg8) { SCM args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8 }; return scm_c_vm_run (scm_the_vm (), proc, args, 8); } SCM scm_call_9 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4, SCM arg5, SCM arg6, SCM arg7, SCM arg8, SCM arg9) { SCM args[] = { arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9 }; return scm_c_vm_run (scm_the_vm (), proc, args, 9); } SCM scm_call_n (SCM proc, SCM *argv, size_t nargs) { return scm_c_vm_run (scm_the_vm (), proc, argv, nargs); } SCM scm_call (SCM proc, ...) { va_list argp; SCM *argv = NULL; size_t i, nargs = 0; va_start (argp, proc); while (!SCM_UNBNDP (va_arg (argp, SCM))) nargs++; va_end (argp); argv = alloca (nargs * sizeof (SCM)); va_start (argp, proc); for (i = 0; i < nargs; i++) argv[i] = va_arg (argp, SCM); va_end (argp); return scm_c_vm_run (scm_the_vm (), proc, argv, nargs); } /* Simple procedure applies */ SCM scm_apply_0 (SCM proc, SCM args) { return scm_apply (proc, args, SCM_EOL); } SCM scm_apply_1 (SCM proc, SCM arg1, SCM args) { return scm_apply (proc, scm_cons (arg1, args), SCM_EOL); } SCM scm_apply_2 (SCM proc, SCM arg1, SCM arg2, SCM args) { return scm_apply (proc, scm_cons2 (arg1, arg2, args), SCM_EOL); } SCM scm_apply_3 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM args) { return scm_apply (proc, scm_cons (arg1, scm_cons2 (arg2, arg3, args)), SCM_EOL); } /* This code processes the arguments to apply: (apply PROC ARG1 ... ARGS) Given a list (ARG1 ... ARGS), this function conses the ARG1 ... arguments onto the front of ARGS, and returns the resulting list. Note that ARGS is a list; thus, the argument to this function is a list whose last element is a list. Apply calls this function, and applies PROC to the elements of the result. apply:nconc2last takes care of building the list of arguments, given (ARG1 ... ARGS). Rather than do new consing, apply:nconc2last destroys its argument. On that topic, this code came into my care with the following beautifully cryptic comment on that topic: "This will only screw you if you do (scm_apply scm_apply '( ... ))" If you know what they're referring to, send me a patch to this comment. */ SCM_DEFINE (scm_nconc2last, "apply:nconc2last", 1, 0, 0, (SCM lst), "Given a list (@var{arg1} @dots{} @var{args}), this function\n" "conses the @var{arg1} @dots{} arguments onto the front of\n" "@var{args}, and returns the resulting list. Note that\n" "@var{args} is a list; thus, the argument to this function is\n" "a list whose last element is a list.\n" "Note: Rather than do new consing, @code{apply:nconc2last}\n" "destroys its argument, so use with care.") #define FUNC_NAME s_scm_nconc2last { SCM *lloc; SCM_VALIDATE_NONEMPTYLIST (1, lst); lloc = &lst; while (!scm_is_null (SCM_CDR (*lloc))) lloc = SCM_CDRLOC (*lloc); SCM_ASSERT (scm_ilength (SCM_CAR (*lloc)) >= 0, lst, SCM_ARG1, FUNC_NAME); *lloc = SCM_CAR (*lloc); return lst; } #undef FUNC_NAME static SCM map_var, for_each_var; static void init_map_var (void) { map_var = scm_private_variable (scm_the_root_module (), scm_from_latin1_symbol ("map")); } static void init_for_each_var (void) { for_each_var = scm_private_variable (scm_the_root_module (), scm_from_latin1_symbol ("for-each")); } SCM scm_map (SCM proc, SCM arg1, SCM args) { static scm_i_pthread_once_t once = SCM_I_PTHREAD_ONCE_INIT; scm_i_pthread_once (&once, init_map_var); return scm_apply (scm_variable_ref (map_var), scm_cons (proc, scm_cons (arg1, args)), SCM_EOL); } SCM scm_for_each (SCM proc, SCM arg1, SCM args) { static scm_i_pthread_once_t once = SCM_I_PTHREAD_ONCE_INIT; scm_i_pthread_once (&once, init_for_each_var); return scm_apply (scm_variable_ref (for_each_var), scm_cons (proc, scm_cons (arg1, args)), SCM_EOL); } static SCM scm_c_primitive_eval (SCM exp) { if (!SCM_EXPANDED_P (exp)) exp = scm_call_1 (scm_current_module_transformer (), exp); return eval (scm_memoize_expression (exp), SCM_EOL); } static SCM var_primitive_eval; SCM scm_primitive_eval (SCM exp) { return scm_c_vm_run (scm_the_vm (), scm_variable_ref (var_primitive_eval), &exp, 1); } /* Eval does not take the second arg optionally. This is intentional * in order to be R5RS compatible, and to prepare for the new module * system, where we would like to make the choice of evaluation * environment explicit. */ SCM_DEFINE (scm_eval, "eval", 2, 0, 0, (SCM exp, SCM module_or_state), "Evaluate @var{exp}, a list representing a Scheme expression,\n" "in the top-level environment specified by\n" "@var{module_or_state}.\n" "While @var{exp} is evaluated (using @code{primitive-eval}),\n" "@var{module_or_state} is made the current module when\n" "it is a module, or the current dynamic state when it is\n" "a dynamic state." "Example: (eval '(+ 1 2) (interaction-environment))") #define FUNC_NAME s_scm_eval { SCM res; scm_dynwind_begin (SCM_F_DYNWIND_REWINDABLE); if (scm_is_dynamic_state (module_or_state)) scm_dynwind_current_dynamic_state (module_or_state); else if (scm_module_system_booted_p) { SCM_VALIDATE_MODULE (2, module_or_state); scm_dynwind_current_module (module_or_state); } /* otherwise if the module system isn't booted, ignore the module arg */ res = scm_primitive_eval (exp); scm_dynwind_end (); return res; } #undef FUNC_NAME static SCM f_apply; /* Apply a function to a list of arguments. This function is exported to the Scheme level as taking two required arguments and a tail argument, as if it were: (lambda (proc arg1 . args) ...) Thus, if you just have a list of arguments to pass to a procedure, pass the list as ARG1, and '() for ARGS. If you have some fixed args, pass the first as ARG1, then cons any remaining fixed args onto the front of your argument list, and pass that as ARGS. */ SCM scm_apply (SCM proc, SCM arg1, SCM args) { /* Fix things up so that args contains all args. */ if (scm_is_null (args)) args = arg1; else args = scm_cons_star (arg1, args); return scm_call_with_vm (scm_the_vm (), proc, args); } static void prepare_boot_closure_env_for_apply (SCM proc, SCM args, SCM *out_body, SCM *out_env) { int nreq = BOOT_CLOSURE_NUM_REQUIRED_ARGS (proc); SCM env = BOOT_CLOSURE_ENV (proc); if (BOOT_CLOSURE_IS_FIXED (proc) || (BOOT_CLOSURE_IS_REST (proc) && !BOOT_CLOSURE_HAS_REST_ARGS (proc))) { if (SCM_UNLIKELY (scm_ilength (args) != nreq)) scm_wrong_num_args (proc); for (; scm_is_pair (args); args = CDR (args)) env = scm_cons (CAR (args), env); *out_body = BOOT_CLOSURE_BODY (proc); *out_env = env; } else if (BOOT_CLOSURE_IS_REST (proc)) { if (SCM_UNLIKELY (scm_ilength (args) < nreq)) scm_wrong_num_args (proc); for (; nreq; nreq--, args = CDR (args)) env = scm_cons (CAR (args), env); env = scm_cons (args, env); *out_body = BOOT_CLOSURE_BODY (proc); *out_env = env; } else { int i, argc, nreq, nopt; SCM body, rest, kw, inits, alt; SCM mx = BOOT_CLOSURE_CODE (proc); loop: BOOT_CLOSURE_PARSE_FULL (mx, body, nargs, rest, nopt, kw, inits, alt); argc = scm_ilength (args); if (argc < nreq) { if (scm_is_true (alt)) { mx = alt; goto loop; } else scm_wrong_num_args (proc); } if (scm_is_false (kw) && argc > nreq + nopt && scm_is_false (rest)) { if (scm_is_true (alt)) { mx = alt; goto loop; } else scm_wrong_num_args (proc); } for (i = 0; i < nreq; i++, args = CDR (args)) env = scm_cons (CAR (args), env); if (scm_is_false (kw)) { /* Optional args (possibly), but no keyword args. */ for (; i < argc && i < nreq + nopt; i++, args = CDR (args)) { env = scm_cons (CAR (args), env); inits = CDR (inits); } for (; i < nreq + nopt; i++, inits = CDR (inits)) env = scm_cons (EVAL1 (CAR (inits), env), env); if (scm_is_true (rest)) env = scm_cons (args, env); } else { SCM aok; aok = CAR (kw); kw = CDR (kw); /* Keyword args. As before, but stop at the first keyword. */ for (; i < argc && i < nreq + nopt && !scm_is_keyword (CAR (args)); i++, args = CDR (args), inits = CDR (inits)) env = scm_cons (CAR (args), env); for (; i < nreq + nopt; i++, inits = CDR (inits)) env = scm_cons (EVAL1 (CAR (inits), env), env); if (scm_is_true (rest)) { env = scm_cons (args, env); i++; } else if (scm_is_true (alt) && scm_is_pair (args) && !scm_is_keyword (CAR (args))) { /* Too many positional args, no rest arg, and we have an alternate clause. */ mx = alt; goto loop; } /* Now fill in env with unbound values, limn the rest of the args for keywords, and fill in unbound values with their inits. */ { int imax = i - 1; int kw_start_idx = i; SCM walk, k, v; for (walk = kw; scm_is_pair (walk); walk = CDR (walk)) if (SCM_I_INUM (CDAR (walk)) > imax) imax = SCM_I_INUM (CDAR (walk)); for (; i <= imax; i++) env = scm_cons (SCM_UNDEFINED, env); if (scm_is_pair (args) && scm_is_pair (CDR (args))) for (; scm_is_pair (args) && scm_is_pair (CDR (args)); args = CDR (args)) { k = CAR (args); v = CADR (args); if (!scm_is_keyword (k)) { if (scm_is_true (rest)) continue; else break; } for (walk = kw; scm_is_pair (walk); walk = CDR (walk)) if (scm_is_eq (k, CAAR (walk))) { /* Well... ok, list-set! isn't the nicest interface, but hey. */ int iset = imax - SCM_I_INUM (CDAR (walk)); scm_list_set_x (env, SCM_I_MAKINUM (iset), v); args = CDR (args); break; } if (scm_is_null (walk) && scm_is_false (aok)) error_unrecognized_keyword (proc, k); } if (scm_is_pair (args) && scm_is_false (rest)) error_invalid_keyword (proc, CAR (args)); /* Now fill in unbound values, evaluating init expressions in their appropriate environment. */ for (i = imax - kw_start_idx; scm_is_pair (inits); i--, inits = CDR (inits)) { SCM tail = scm_list_tail (env, SCM_I_MAKINUM (i)); if (SCM_UNBNDP (CAR (tail))) SCM_SETCAR (tail, EVAL1 (CAR (inits), CDR (tail))); } } } *out_body = body; *out_env = env; } } static void prepare_boot_closure_env_for_eval (SCM proc, unsigned int argc, SCM exps, SCM *out_body, SCM *inout_env) { int nreq = BOOT_CLOSURE_NUM_REQUIRED_ARGS (proc); SCM new_env = BOOT_CLOSURE_ENV (proc); if (BOOT_CLOSURE_IS_FIXED (proc) || (BOOT_CLOSURE_IS_REST (proc) && !BOOT_CLOSURE_HAS_REST_ARGS (proc))) { for (; scm_is_pair (exps); exps = CDR (exps), nreq--) new_env = scm_cons (EVAL1 (CAR (exps), *inout_env), new_env); if (SCM_UNLIKELY (nreq != 0)) scm_wrong_num_args (proc); *out_body = BOOT_CLOSURE_BODY (proc); *inout_env = new_env; } else if (BOOT_CLOSURE_IS_REST (proc)) { if (SCM_UNLIKELY (argc < nreq)) scm_wrong_num_args (proc); for (; nreq; nreq--, exps = CDR (exps)) new_env = scm_cons (EVAL1 (CAR (exps), *inout_env), new_env); { SCM rest = SCM_EOL; for (; scm_is_pair (exps); exps = CDR (exps)) rest = scm_cons (EVAL1 (CAR (exps), *inout_env), rest); new_env = scm_cons (scm_reverse (rest), new_env); } *out_body = BOOT_CLOSURE_BODY (proc); *inout_env = new_env; } else { SCM args = SCM_EOL; for (; scm_is_pair (exps); exps = CDR (exps)) args = scm_cons (EVAL1 (CAR (exps), *inout_env), args); args = scm_reverse_x (args, SCM_UNDEFINED); prepare_boot_closure_env_for_apply (proc, args, out_body, inout_env); } } static SCM boot_closure_apply (SCM closure, SCM args) { SCM body, env; prepare_boot_closure_env_for_apply (closure, args, &body, &env); return eval (body, env); } static int boot_closure_print (SCM closure, SCM port, scm_print_state *pstate) { SCM args; scm_puts ("#', port); return 1; } void scm_init_eval () { SCM primitive_eval; f_apply = scm_c_define_gsubr ("apply", 2, 0, 1, scm_apply); scm_tc16_boot_closure = scm_make_smob_type ("boot-closure", 0); scm_set_smob_apply (scm_tc16_boot_closure, boot_closure_apply, 0, 0, 1); scm_set_smob_print (scm_tc16_boot_closure, boot_closure_print); primitive_eval = scm_c_make_gsubr ("primitive-eval", 1, 0, 0, scm_c_primitive_eval); var_primitive_eval = scm_define (SCM_SUBR_NAME (primitive_eval), primitive_eval); #include "libguile/eval.x" } /* Local Variables: c-file-style: "gnu" End: */